Skip to main content
Log in

Dielectric relaxation and polaronic hopping in the single-layered perovskite La1.5Sr0.5CoO4 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single tetragonal La1.5Sr0.5CoO4 ceramics with the space group of I 4/mmm (139) were prepared by a solid-state reaction process, and dielectric characteristics were investigated on a broad frequency and temperature range. There was one obvious dielectric relaxation around room temperature plus a low temperature upturn on the curve of temperature dependence of dielectric properties for La1.5Sr0.5CoO4 ceramics. This dielectric relaxation was a thermal-activated process. It should be attributed to the mixed-valence structure (Co2+/Co3+) since its activation energy was similar to that of small polaronic hopping process. After annealing the sample in O2 atmosphere, dielectric constants and ac conductivities of La1.5Sr0.5CoO4 ceramics increased and decreased after annealing the sample in N2 atmosphere. This abnormal phenomenon should be attributed to the variation of concentration for holes (Co3+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Troyanchuk IO, Kasper NV, Khalyavin DD, Szymczak H, Szymczak R, Baran M (1998) Phys Rev Lett 80:3380

    Article  CAS  Google Scholar 

  2. Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian RA, Sasaki T (2003) Nature (London) 422:53

    Article  CAS  Google Scholar 

  3. Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685

    Article  CAS  Google Scholar 

  4. Vogt T, Woodward PM, Karen P, Hunter BA, Henning P, Moodenbaugh AR (2000) Phys Rev Lett 84:2969

    Article  CAS  Google Scholar 

  5. Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K (2001) Phys Rev Lett 87:177202

    Article  CAS  Google Scholar 

  6. Taskin AA, Lavrov AN, Ando Y (2003) Phys Rev Lett 90:227201

    Article  CAS  Google Scholar 

  7. Kudasov YB (2006) Phys Rev Lett 96:027212

    Article  Google Scholar 

  8. Cwik M, Benomar M, Finger T, Sidis Y, Senff D, Reuther M, Lorenz T, Braden M (2009) Phys Rev Lett 102:057201

    Article  CAS  Google Scholar 

  9. Boothroyd AT, Babkevich P, Prabhakaran D, Freeman PG (2011) Nature (London) 471:341

    Article  CAS  Google Scholar 

  10. Helme LM, Boothroyd AT, Coldea R, Prabhakaran D, Frose CD, Keen DA, Regnault LP, Freeman PG, Enderle M, Kulda J (2009) Phys Rev B 80:134414

    Article  Google Scholar 

  11. Chang CF, Hu Z, Wu H, Burnus T, Hollmann N, Benomar M, Lorenz T, Tanaka A, Lin HJ, Hsieh HH, Chen CT, Tjeng LH (2009) Phys Rev Lett 102:116401

    Article  CAS  Google Scholar 

  12. Wu H, Burnus T (2009) Phys Rev B 80:081105(R)

    Google Scholar 

  13. Shimada Y, Miyasaka S, Kumai R, Tokura Y (2006) Phys Rev B 73:134424

    Article  Google Scholar 

  14. Chichev AV, Dlouhá M, Vratislav S, Knížek K, Hejtmánek J, Maryško M, Veverka M, Jirák Z, Golosova NO, Kozlenko DP, Savenko BN (2006) Phys Rev B 74:134414

    Article  Google Scholar 

  15. Savici AT, Zaliznyak IA, Gu GD, Erwin R (2007) Phys Rev B 75:184443

    Article  Google Scholar 

  16. Sakiyama N, Zaliznyak IA, Lee SH, Mitsui Y, Yoshizawa H (2008) Phys Rev B 78:180406(R)

    Article  Google Scholar 

  17. Moritomo Y, Higashi K, Matsuda K, Nakamura A (1997) Phys Rev B 55:R14725

    Article  CAS  Google Scholar 

  18. Zaliznyak IA, Hill JP, Tranquada JM, Erwin R, Moritomo Y (2000) Phys Rev Lett 85:4353

    Article  CAS  Google Scholar 

  19. Zaliznyak IA, Tranquada JM, Erwin R, Moritomo Y (2001) Phys Rev B 64:195117

    Article  Google Scholar 

  20. Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 293:673

    Article  CAS  Google Scholar 

  21. Liu XQ, Wu SY, Chen XM, Zhu HY (2008) J Appl Phys 104:054114

    Article  Google Scholar 

  22. Liu XQ, Wu YJ, Chen XM, Zhu HY (2009) J Appl Phys 105:054104

    Article  Google Scholar 

  23. Krohns S, Lunkenheimer P, Kant Ch, Pronin AV, Brom HB, Nugroho AA, Diantoro M, Loidl A (2009) Appl Phys Lett 94:122903

    Article  Google Scholar 

  24. Lunkenheimer P, Krohns S, Riegg S, Ebbinghaus SG, Reller A, Loidl A (2010) Eur Phys J Special Top 180:61

    Article  Google Scholar 

  25. Preethi Meher KRS, Varma KBR (2009) J Appl Phys 105:034113

    Article  Google Scholar 

  26. Iguchi E, Nakatsugawa H, Futakuchi K (1998) J Solid State Chem 139:176

    Article  CAS  Google Scholar 

  27. Liu XQ, Yang WZ, Song CL, Chen XM (2010) Appl Phys A 100:1131

    Article  CAS  Google Scholar 

  28. Jaime M, Hardner HT, Salamon MB, Rubinstein M, Dorsey P, Emin D (1997) Phys Rev Lett 78:951

    Article  CAS  Google Scholar 

  29. Lin YQ, Chen XM (2010) Appl Phys Lett 96:142902

    Article  Google Scholar 

  30. Song CL, Wu YJ, Liu XQ, Chen XM (2010) J Alloys Compd 490:605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science Foundation of China under Grant Nos. 50832005 and 50702049, Chinese National Key Project for Fundamental Researches under Grant No. 2009CB623302, and the Fundamental Research Funds for Central Universities under Grand No. 2010QNA4006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W.Z., Song, C.L., Liu, X.Q. et al. Dielectric relaxation and polaronic hopping in the single-layered perovskite La1.5Sr0.5CoO4 ceramics. J Mater Sci 46, 6339–6343 (2011). https://doi.org/10.1007/s10853-011-5580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5580-y

Keywords

Navigation