Skip to main content
Log in

Soft mechanochemically assisted synthesis of nano-sized LiCoO2 with a layered structure

  • Size Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Soft mechanochemically assisted reaction between CoOOH and LiOH·H2O at 400 °C yields O3-layered LiCoO2 with nanometric particle sizes of 20–30 nm. The interaction of CoOOH with LiOH·H2O is monitored by DTA and TGA analysis. XRD powder and TEM analysis is used for structural and morphological characterization of the precursors and target LiCoO2. Soft mechanochemical treatment of the CoOOH–LiOH·H2O mixture leads to amorphization of the lithium salt, while CoOOH remains intact. In addition, a partial exchange of protons from CoOOH with lithium takes place. Thermal treatment at 400 °C of the mechanochemically treated mixture yields layered LiCoO2 with a small amount of a spinel-type Li2+yCo2−yO4 phase (less than 2%). The morphology of LiCoO2 inherits the morphology of CoOOH in the precursor. Layered LiCoO2 displays thin nanometric particles with a narrow particle size distribution: more than 50% of particles are distributed between 20 and 30 nm. The electrochemical extraction and insertion of lithium in nano-sized LiCoO2 is examined in model lithium cells using a galvanostatic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691

    Article  CAS  Google Scholar 

  2. Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685

    Article  CAS  Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  4. Maier J (2005) Nat Mater 4:805

    Article  CAS  Google Scholar 

  5. Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado JL (1996) Chem Mater 8:1429

    Article  CAS  Google Scholar 

  6. Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado JL (1997) Ionics 3:1

    Article  CAS  Google Scholar 

  7. Kim DS, Lee CK, Kim H (2010) Solid State Sci 12:45

    Article  CAS  Google Scholar 

  8. Kim KH, Kim KB (2008) Ultrason Sonochem 15:1019

    Article  CAS  Google Scholar 

  9. Larcher D, Delobel B, Dantras-Laffont L, Simon E, Blach JF, Baudrin E (2010) Inorg Chem 49:10949

    Article  CAS  Google Scholar 

  10. Yoshimura M, Suchanek W (1997) Solid State Ion 98:197

    Article  CAS  Google Scholar 

  11. Larcher D, Palacín MR, Amatucci GG, Tarascon JM (1997) J Electrochem Soc 144:408

    Article  CAS  Google Scholar 

  12. Khanderi J, Schneider JJ (2010) Eur J Inorg Chem 29:4591

    Article  CAS  Google Scholar 

  13. Johnston WD, Heikes RR, Sestrich D (1958) J Phys Chem Solids 7:1

    Article  CAS  Google Scholar 

  14. Orman HJ, Wiseman PJ (1986) Acta Crystallogr C 40:12

    Article  Google Scholar 

  15. Delmas C, Fouassier C, Hagenmuller P (1980) Phys B 99:81

    Article  CAS  Google Scholar 

  16. Gummow RJ, Liles DC, Thackeray MM, David WIF (1993) Mater Res Bull 28:1177

    Article  CAS  Google Scholar 

  17. Morales J, Stoyanova R, Tirado JL, Zhecheva E (1994) J Solid State Chem 113:182

    Article  CAS  Google Scholar 

  18. Shao-Horn Y, Hackney SA, Kahaian AJ, Thackeray MM (2002) J Solid State Chem 168:60

    Article  CAS  Google Scholar 

  19. Jeong WT, Lee KS (2001) J Alloys Comp 322:205

    Article  CAS  Google Scholar 

  20. Kosova NV, Anufrienko VF, Larina TV, Rougier A, Aymard L, Tarascon JM (2002) J Solid State Chem 165:56

    Article  CAS  Google Scholar 

  21. Ninga LJ, Wua YP, Fanga SB, Rahm E, Holze R (2004) J Power Sources 133:229

    Article  CAS  Google Scholar 

  22. Delmas C, Braconnier JJ, Hagenmuller P (1982) Mater Res Bull 17:117

    Article  CAS  Google Scholar 

  23. Carlier D, Saadoune I, Croguennec L, Menetrier M, Suard E, Delmas C (2001) Solid State Ion 144:263

    Article  CAS  Google Scholar 

  24. Paulsen JM, Dahn JR (1999) Solid State Ion 126:3

    Article  CAS  Google Scholar 

  25. Komaba S, Yabuuchi N, Kawamoto Y (2009) Chem Lett 38:954

    Article  CAS  Google Scholar 

  26. Berthelot R, Carlier D, Pollet M, Doumerc JP, Delmas C (2009) Electrochem Solid-State Lett 12:A207

    Article  CAS  Google Scholar 

  27. Kawamura T, Makidera M, Okada S, Koga K, Miura N, Yamaki J (2005) J Power Sources 146:27

    Article  CAS  Google Scholar 

  28. Okubo M, Hosono E, Kudo T, Zhou HS, Honma I (2009) Solid State Ion 180:612

    Article  CAS  Google Scholar 

  29. Zhecheva E, Stoyanova R (1994) J Solid State Chem 109:47

    Article  CAS  Google Scholar 

  30. Zhecheva E, Stoyanova R (1991) Mater Res Bull. 26:1315

    Article  CAS  Google Scholar 

  31. Kosova NV, Uvarov NF, Devyatkina ET, Avvakumov EG (2000) Solid State Ion 135:107

    Article  CAS  Google Scholar 

  32. Delaplane RG, Ibers JA, Ferraro JR, Rush JJ (1969) J Chem Phys 50:1920

    Article  CAS  Google Scholar 

  33. Rodrıguez-Carvajal J (1990) In: Satellite meeting on powder diffraction of the XV congress of the IUCr, p 127

  34. Benedek R, Thackeray MM, van de Wall A (2008) Chem Mater 20:5485

    Article  CAS  Google Scholar 

  35. Knop O, Reid KIG, Sutarno, Nakagawa Y (1968) Can. J. Chem 46:3463

    Article  CAS  Google Scholar 

  36. Fernandez-Rodrigues JM, Hernan L, Morales J, Tirado JL (1988) Mater Res Bull 23:899

    Article  Google Scholar 

  37. Zhecheva E, Stoyanova R, Angelov S (1990) Mater Chem Phys 25:361

    Article  CAS  Google Scholar 

  38. Antolini E (1997) Mater Res Bull 32:9

    Article  CAS  Google Scholar 

  39. Shinova E, Mandzhukova Ts, Grigorova E, Hristov M, Stoyanova R, Nihtianova D, Zhecheva E (2011) Solid State Ion. doi: https://doi.org/10.1016/j.ssi.2011.01.018

    Article  CAS  Google Scholar 

  40. Shlyakhtin OA, Choi SH, Yoon YS, Oh Y-J (2004) Electrochim Acta 50:511

    Article  CAS  Google Scholar 

  41. Choi SH, Kim J, Yoon YS (2004) J Power Sources 135:286

    Article  CAS  Google Scholar 

  42. Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091

    Article  CAS  Google Scholar 

  43. Reimers JN, Dahn JR, von Sacken U (1993) J Electrochem Soc 140:2752

    Article  CAS  Google Scholar 

  44. Alcántara R, Ortiz GF, Lavela P, Tirado JL, Jaegermann W, Thissen A (2005) J Electroanal Chem 584:147

    Article  CAS  Google Scholar 

  45. Alcántara R, Ortiz GF, Tirado JL, Stoyanova R, Zhecheva E, Ivanova S (2009) J Power Sources 194:494

    Article  CAS  Google Scholar 

  46. Ménétrier M, Carlier D, Blangero D, Delmas C (2008) Electrochem Solid State Lett 11:A179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the financial support from the National Science Fund of Bulgaria (IDEAS No D0-02-309/2008). Partial financial support by the National Centre for New Materials UNION (Contract No DO-02-82/2008) is also acknowledged. We are grateful of TIMCAL Company for providing carbon additives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zhecheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorova, E., Mandzhukova, T.S., Khristov, M. et al. Soft mechanochemically assisted synthesis of nano-sized LiCoO2 with a layered structure. J Mater Sci 46, 7106–7113 (2011). https://doi.org/10.1007/s10853-011-5407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5407-x

Keywords

Navigation