Skip to main content
Log in

Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A network of entangled multiwall carbon nanotubes is presented as a conductor whose conductivity is sensitive to compressive stress both in the course of monotonic stress growth and when loading/unloading cycles are imposed. The testing has shown as much as 100% network conductivity increase at the maximum applied stress. It indicates favorable properties of multiwall carbon nanotube networks for their use as stress-electric signal transducers. To model the conductivity-stress dependence, it is hypothesized that compression increases local contact forces between nanotubes, which results in more conductive contacts. The lack of detailed knowledge of the mechanism as well as an unclear shift from individual contacts to the whole network conductance behavior is circumvented with a statistical approach. In this respect, good data representation is reached using Weibull distribution for the description of distribution of nanotube contact resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thostenson ET, Li CY, Chou TW (2005) Compos Sci Technol 65:491

    Article  CAS  Google Scholar 

  2. Cao Q, Rogers JA (2009) Adv Mater 21:29

    Article  CAS  Google Scholar 

  3. Walters DA, Casavant MJ, Quin XC, Huffman CB, Boul PJ, Ericson LM, Haroz EH, O’Connel MJ, Smith K, Colbert DT, Smalley RE (2001) Chem Phys Lett 338:14

    Article  CAS  Google Scholar 

  4. Poquillon D, Viguier B, Andrieu E (2005) J Mat Sci 40:5963. doi:10.1007/s10853-005-5070-1

    Article  CAS  Google Scholar 

  5. Allaoui A, Hoa SV, Evesque P, Bai J (2009) Scripta Mater 6:628

    Google Scholar 

  6. Kukowecz A, Smajda R, Oze M, Schaefer B, Haspel H, Konya Z, Kiricsi I (2008) Phys Stat Sol 245:2331

    Article  Google Scholar 

  7. Simsek Y, Ozyuzer L, Seyham AT, Tanoglu M, Schulte K (2007) J Mater Sci 42:9689. doi:10.1007/s10853-007-1943-9

    Article  CAS  Google Scholar 

  8. Chang L, Friedrich K, Ye L, Toro P (2009) J Mater Sci 44:4003. doi:10.1007/s10853-009-3551-3

    Article  CAS  Google Scholar 

  9. Ham HT, Choi YS, Chung IJ (2005) Colloid Interf Sci 286:216

    Article  CAS  Google Scholar 

  10. Kimmer D, Slobodian P, Petras D, Zatloukal M, Olejník R, Saha P (2009) J Appl Polym Sci 111:2711

    Article  CAS  Google Scholar 

  11. Wang D, Song PC, Liu CH, Wu W, Fan SS (2008) Nanotechnology 19(7):1

    Google Scholar 

  12. Ashrafi B, Guan JW, Mirjalili V, Hubert P, Simard B, Johnston A (2010) COMPOS PART A-APPL S 41(9):1184

    Article  Google Scholar 

  13. Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng 49:89

    Article  Google Scholar 

  14. Yaglioglu O, Hart AJ, Martens R, Slocum AH (2006) Rev Sci Instrum 77:095105/1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 7088352101), the Grant Agency of the Academy of Sciences of the Czech Republic (GAAV IAA200600803) and by the Fund of the Institute of Hydrodynamics AV0Z20600510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Slobodian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slobodian, P., Riha, P., Lengalova, A. et al. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks. J Mater Sci 46, 3186–3190 (2011). https://doi.org/10.1007/s10853-010-5202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5202-0

Keywords

Navigation