Skip to main content
Log in

Pyrolytic formation of a carbonaceous solid for heavy metal adsorption

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solid-state pyrolysis of acetylenedicarboxylic acid, monopotassium salt at 300 °C in air results in bulk quantities of a micron-sized yet macroporous oxidized carbon, which inherently possesses high content of metal-binding sites, such as carboxylate groups, free radicals, and ether/hydroxyl units. Besides its high oxygen content, the solid is stable in water and does not leach or disorient, while it also exhibits an appreciable thermal stability, at temperature exceeding 200 °C in air. Several techniques including TEM/SEM, TGA, Raman/FT-IR, XPS, EPR, and potentiometric titrations were employed for the characterization of the solid. Furthermore, liquid phase adsorption experiments revealed that the material is an efficient heavy metal adsorbent due to the presence of diverse surface-accessible binding sites, showing unusually high metal uptake capacities for Pb2+ and Cu2+ ions (ca. 4.5 mmol g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lafferty C, Hobday M (1990) Fuel 69:78

    Article  CAS  Google Scholar 

  2. Sugano M, Mashimo K, Wainai T (1999) Fuel 78:945

    Article  CAS  Google Scholar 

  3. Wu J, Xu Q, Bai T (2007) Appl Radiat Isot 65:901

    Article  CAS  Google Scholar 

  4. Pehlivan E, Arslan G (2007) Fuel Process Technol 88:99

    Article  CAS  Google Scholar 

  5. Sevilla M, Fuertes AB (2009) Carbon 47:2281

    Article  CAS  Google Scholar 

  6. Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M (2009) Chem Mater 21:484

    Article  CAS  Google Scholar 

  7. Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M (2010) Adv Mater 22:813

    Article  CAS  Google Scholar 

  8. Bourlinos AB, Georgakilas V, Zboril R (2008) Carbon 46:1801

    Article  CAS  Google Scholar 

  9. Bourlinos AB, Steriotis TA, Karakassides M, Sanakis Y, Tzitzios V, Trapalis C, Kouvelos E, Stubos A (2007) Carbon 45:852

    Article  CAS  Google Scholar 

  10. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Small 4:455

    Article  CAS  Google Scholar 

  11. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Chem Mater 20:4539

    Article  CAS  Google Scholar 

  12. Bourlinos AB, Giannelis EP, Sanakis Y, Bakandritsos A, Karakassides M, Gjoka M, Petridis D (2006) Carbon 44:1906

    Article  CAS  Google Scholar 

  13. Bourlinos AB, Georgakilas V, Zboril R, Bakandritsos A, Stassinopoulos A, Anglos D, Giannelis EP (2009) Carbon 47:519

    Article  CAS  Google Scholar 

  14. Bourlinos AB, Steriotis TA, Zboril R, Georgakilas V, Stubos A (2009) J Mater Sci 44:1407. doi:10.1007/s10853-009-3263-8

    Article  CAS  Google Scholar 

  15. Bakandritsos A, Bourlinos AB, Tzitzios V, Boukos N, Devlin E, Steriotis T, Kouvelos V, Petridis D (2007) Adv Funct Mater 17:1409

    Article  CAS  Google Scholar 

  16. Skoulika S, Dallas P, Siskos MG, Deligiannakis Y, Michaelides A (2003) Chem Mater 15:4576

    Article  CAS  Google Scholar 

  17. Dallas P, Bourlinos AB, Komninou P, Karakassides M, Niarchos D (2009) Nanoscale Res Lett 4:1358

    Article  CAS  Google Scholar 

  18. Stathi P, Louloudi M, Deligiannakis Y (2009) Chem Phys Lett 472:85

    Article  Google Scholar 

  19. Chang T (1984) Magn Reson Rev 9:65

    CAS  Google Scholar 

  20. Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) J Colloid Interface Sci 316:298

    Article  CAS  Google Scholar 

  21. Levine DG, Schlosberg RH, Silbernagel BG (1982) Proc Natl Acad Sci USA 79:3365

    Article  CAS  Google Scholar 

  22. Linge HG (1989) Fuel 68:111

    Article  CAS  Google Scholar 

  23. Skrabalak SE, Suslick KS (2006) J Am Chem Soc 128:12642

    Article  CAS  Google Scholar 

  24. Bang JH, Han K, Skrabalak SE, Kim H, Suslick KS (2007) J Phys Chem C 111:10959

    Article  CAS  Google Scholar 

  25. Petrus L, Stamhuis EJ, Joosten GEH (1981) Ind Eng Chem Prod Res Dev 20:366

    Article  CAS  Google Scholar 

  26. Raje AP, Datta R (1992) J Mol Catal 72:97

    Article  CAS  Google Scholar 

  27. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascón JMD (1994) Carbon 32:1523

    Article  CAS  Google Scholar 

  28. Gasgnier M (2001) J Mater Sci Lett 20:1259

    Article  CAS  Google Scholar 

  29. Fanning PE, Vannice MA (1993) Carbon 31:721

    Article  CAS  Google Scholar 

  30. Kaufman JH, Metin S, Saperstein DD (1989) Phys Rev B 39:13053

    Article  CAS  Google Scholar 

  31. Zhou Z, Xia L (2002) J Phys D Appl Phys 35:1991

    Article  CAS  Google Scholar 

  32. Ferrari AC, Rodil SE, Robertson J (2003) Phys Rev B 67:155306

    Article  Google Scholar 

  33. Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Carbon 45:785

    Article  CAS  Google Scholar 

  34. Zhang D, Luo H, Wang Y, Feng H (2010) Chem Lett 39:424

    Article  CAS  Google Scholar 

  35. Lijewski S, Wencka M, Hoffmann SK, Kempinski M (2008) Phys Rev B 77:014304

    Article  Google Scholar 

  36. Arcon D, Jaglicic Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Phys Rev B 74:014438

    Article  Google Scholar 

  37. Garaj S, Thien-Nga L, Gaal R, Forro L, Takahashi K, Kokai F, Yudasaka M, Iijima S (2000) Phys Rev B 62:17115

    Article  CAS  Google Scholar 

  38. Schwartz LM, Gelb RI, Laufer DA (1980) J Chem Eng Data 25:95

    Article  CAS  Google Scholar 

  39. Ma T-Y, Zhang X-J, Yuan Z-Y (2009) J Mater Sci 44:6775. doi:10.1007/s10853-009-3576-7

    Article  CAS  Google Scholar 

  40. Ma T-Y, Lin X-Z, Zhang X-J, Yuan Z-Y (2010) New J Chem 34:1209

    Article  CAS  Google Scholar 

  41. Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Chem Eur J 16:8487

    Article  CAS  Google Scholar 

  42. Alfarra A, Frackowiak E, Béguin F (2004) Appl Surf Sci 228:84

    Article  CAS  Google Scholar 

  43. Montes-Morán MA, Suarez D, Menéndez JA, Fuente E (2004) Carbon 42:1219

    Article  Google Scholar 

  44. Radovic LR, Bockrath B (2005) J Am Chem Soc 127:5917

    Article  CAS  Google Scholar 

  45. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691

    Article  CAS  Google Scholar 

  46. Grigoropoulou G, Christoforidis KC, Louloudi M, Deligiannakis Y (2007) Langmuir 23:10407

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was co-funded by the European Union within the framework of the program “Pythagoras I” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, funded by 25% from the national sources and by 75% from the European Social Fund (ESF), as well as, by the projects of the ministry of education of the Czech Republic (1M6198959201 and MSM6198959218). A. B. Bourlinos and A. K. Stubos acknowledge the funding support provided by the EC FP7 under Grant Agreement No. 229773 (PERL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Bourlinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourlinos, A.B., Karakassides, M.A., Stathi, P. et al. Pyrolytic formation of a carbonaceous solid for heavy metal adsorption. J Mater Sci 46, 975–982 (2011). https://doi.org/10.1007/s10853-010-4854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4854-0

Keywords

Navigation