Skip to main content
Log in

Thermal and optical properties of tellurite glasses doped erbium

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Er3+-doped tellurite glasses with molar compositions of 75TeO2–20ZnO–(5 − x) Na2O–xEr2O3 (x = 0, 0.5, 1, 2, 3, and 4 mol%) have been elaborated from the melt-quenching method. The effects of Er2O3 concentration on the thermal stability and optical properties of tellurite glasses have been discussed. From the differential scanning calorimetry (DSC) profile, the glass transition temperature T g, and crystallization onset temperature T x are estimated. The thermal stability factor, defined as ∆T = T x − T g, was higher than 100 °C. It suggests that tellurite glass exhibits a good thermal stability and consequently is suitable to be a potential candidate for fiber drawing. Furthermore, the stability factor increases with Er2O3 concentration up to 2 mol% then presents a continue decrease suggesting of beginning of crystallization of highly doped tellurite glasses. The refractive index and extinction coefficient data were obtained by analyzing the experimental spectra of tanΨ and cos∆ measured by spectroscopic ellipsometry (SE). The complex dielectric functions (ε = ε1 + iε2) of the samples were estimated from regression analysis. The fundamental absorption edge has been identified from the optical absorption spectra and was analyzed in terms of the theory proposed by Davis and Mott. The values of optical band gap for direct and indirect allowed transitions have been determined. An important decrease of the optical band gap was found after Er doping. It was assigned to structural changes induced from the formation of non-bridging oxygen. The absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach’s tail. The origin of the Urbach energy is associated with the phonon-assisted indirect transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang JS, Vogel EM, Snitzer E (1994) Opt Mater 3(3):187

    Article  CAS  Google Scholar 

  2. Chen D et al (2007) J Appl Phys 101(11):113511

    Article  Google Scholar 

  3. Kishi Y et al (2005) J Am Ceram Soc 88(12):3423

    Article  CAS  Google Scholar 

  4. Tanabe S et al (2002) Opt Mater 19(3):343

    Article  CAS  Google Scholar 

  5. Liu YH et al (2007) J Opt Soc Am B 24(5):1046

    Article  CAS  Google Scholar 

  6. El-Mallawany RAH (2001) Tellurite glasses handbook-physical properties and data. CRC, Boca Raton, FL

    Google Scholar 

  7. Jewell JM, Busse LE, Crahan K, Harbison BB, Aggarwal ID (1994) Proc SPIE 2287:154

    Article  CAS  Google Scholar 

  8. Souza Neto NM, Ramos AY, Barbosa LC (2002) J Non-Cryst Solids 304:195

    Article  Google Scholar 

  9. Jha A, Shen S, Naftaly M (2000) Phys Rev B 62:6215

    Article  CAS  Google Scholar 

  10. Ravi Kanth Kumar VV, George AK, Knight JC, Russell PSJ (2003) Opt Exp 11:2641

    Article  Google Scholar 

  11. Vijaya Prakash G, Narayana Rao D, Bhatnagar AK (2001) Solid State Commun 119:39

    Article  CAS  Google Scholar 

  12. Wang JS, Vogel EM, Snitzer S (1994) Opt Mater 3:187

    Article  CAS  Google Scholar 

  13. Xu S, Fang D, Zhang Z, Jiang Z (2005) J Solid State Chem 178:1817

    Google Scholar 

  14. Ryba-Romanwski W, Golab S, Cichosz L, Jezowaska-Trzebiatawska B (1988) J Non-Cryst Solids 105:295

    Article  Google Scholar 

  15. Biswal S, Nees J, Nishimura A, Takuma H, Mourou G (1999) Opt Commun 160:92

    Article  CAS  Google Scholar 

  16. Graça MPF, Ferreira da Silva MG, Valente MA (2008) J Non-Cryst Solids 354:901

    Article  Google Scholar 

  17. Hruby H (1972) Czech J Phys B 32:1187

    Article  Google Scholar 

  18. Xu SQ, Yang ZM, Dai SX, Yang JH (2003) Chin Phys Lett 20:905

    Article  Google Scholar 

  19. Neindre L, Jiang S, Hwang BJ (1999) J Non-Cryst Solids 255:97

    Article  Google Scholar 

  20. Wang JS, Vogel EM, Snitzer E (1994) Opt Mater 3:187

    Article  CAS  Google Scholar 

  21. Tikhomirov VK, Seddon AB, Furniss D, Ferrari M (2003) J Non-Cryst Solids 326&327:296

    Article  CAS  Google Scholar 

  22. Ozen G, Demirata B, Ovecoglu ML, Genc A (2001) Spectrochim Acta A 57:273

    Article  CAS  Google Scholar 

  23. Sun J, Zhang J, Luo Y, Lu S, Ren X, Chen B, Wang X (2006) Opt Mater 28:306

    Article  CAS  Google Scholar 

  24. Xiao K, Yang Z (2007) Opt Mater 29:1475

    Article  CAS  Google Scholar 

  25. Babu P, Seo HJ, Kesavulu CR, Jang KH, Jayasankar CK (2009) J Lumin 129:444

    Article  CAS  Google Scholar 

  26. Yang Y, Yang Z, Chen B, Li P, Li X, Guo Q (2009) J Alloys Compd 479:883

    Article  CAS  Google Scholar 

  27. Ding Y, Jiang SB, Hwang BC, Luo T, Peyghambarian N, Himei Y, Ito T, Miura Y (2000) Opt Mater 15:123

    Article  CAS  Google Scholar 

  28. Yang J, Dai S, Zhou Y, Wen L, Hu L, Jiang Z (2003) J Appl Phys 93:977

    Article  CAS  Google Scholar 

  29. Macfarlane DR, Javorniczky JS, Newman PJ, Booth DJ, Bogdanov V (1995) J Non-Cryst Solids 184:249

    Article  Google Scholar 

  30. Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North-Holland, Amsterdam

    Google Scholar 

  31. Wemple SH (1973) Phys Rev 7:3767

    Article  CAS  Google Scholar 

  32. Smith DY, Shiles E, Inokuti M (2004) Nucl Instrum Math Phys Res B 218:170

    Article  CAS  Google Scholar 

  33. Butov OV, Golant KM, Tomashuk AL, van Stralen MJN, Breuls AHE (2002) Opt Commun 213:301

    Article  CAS  Google Scholar 

  34. Wemple SH (1979) Appl Opt 18:31

    Article  CAS  Google Scholar 

  35. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  36. Davis EA, Mott NF (1970) Philos Mag 22:903

    Article  CAS  Google Scholar 

  37. Nelson C, Furukawa I, Nelson WB (1983) Mater Res Bull 18:959

    Article  CAS  Google Scholar 

  38. Mcswain BD, Borrel NF, Gongjen SV (1963) Phys Chem Glasses 4:1

    CAS  Google Scholar 

  39. Akamine S, Nanba T, Miura Y, Sakida S (2005) In: 9th biennial worldwide congress on refractories, 8–11 November, Orlando, Florida

  40. Berthereau A, Fargin E, Villezusanne A, Olazcuaga R, Le Flem G, Ducasse L (1996) J Solid State Chem 126:142

    Article  Google Scholar 

  41. Sakida S (2001) J Am Ceram Soc 84:836

    Article  CAS  Google Scholar 

  42. Hassan MA, Hogarth CA (1988) J Mater Sci 23:2500 doi:10.1007/BF01111908

    Article  CAS  Google Scholar 

  43. Skuja L, Kajihara K, Ikuta Y, Hirano M, Hosono H (2004) J Non-Cryst Solids 345–346:328

    Article  Google Scholar 

  44. Dayanand C, Bhikshamaiah G, Salagram M (1995) Mater Lett 23:309

    Article  CAS  Google Scholar 

  45. Chopra KL, Bahl SK (1972) Thin Solid Films 11:377

    Article  CAS  Google Scholar 

  46. Subrahmanyam K, Salagram M (2000) Opt Mater 15:181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jlassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jlassi, I., Elhouichet, H. & Ferid, M. Thermal and optical properties of tellurite glasses doped erbium. J Mater Sci 46, 806–812 (2011). https://doi.org/10.1007/s10853-010-4820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4820-x

Keywords

Navigation