Skip to main content
Log in

Thin film deposition using a plasma source with a hot refractory anode vacuum arc

  • IMEC 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate (L) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L = 110 mm, and I = 200 A, the peak was at t p = 15 s after arc ignition while with the long anode t p = 45 s. t p decreased with I, from 45 s with I = 100 A, to 10 s with I = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Helmersson U, Lattemann M, Bohlmark J, Ehiasarian AP, Gudmundsson JT (2006) Thin Solid Films 513:1–24

    Article  CAS  ADS  Google Scholar 

  2. Bandyopadhyay SK, Pal AK (1979) J Mater Sci 14:1321. doi:10.1007/BF00549303

    Article  CAS  ADS  Google Scholar 

  3. Park HW, Danyluk S (1991) J Mater Sci 26:23. doi:10.1007/BF00576027

    Article  CAS  ADS  Google Scholar 

  4. Yoshii K, Inoue S, Inami S, Kawabe H (1989) J Mater Sci 24:3096. doi:10.1007/BF01139025

    Article  CAS  ADS  Google Scholar 

  5. Wuhrer R, Yeung WY (2002) J Mater Sci 37:3477. doi:10.1023/A:1016515207089

    Article  CAS  Google Scholar 

  6. Liu ZW, Yeo SW, Ong CK (2007) J Mater Sci 42:6489. doi:10.1007/s10853-007-1557-2

    Article  CAS  ADS  Google Scholar 

  7. Fan XM, Lian JS, Guo ZX, Zhao L, Jiang Q (2006) J Mater Sci 41:2237. doi:10.1007/s10853-006-7177-4

    Article  CAS  ADS  Google Scholar 

  8. Chandrasekar MS, Shanmugasigamani S, Pushpavanam M (2010) J Mater Sci 45:1160. doi:10.1007/s10853-009-4045-z

    Article  CAS  ADS  Google Scholar 

  9. Boxman RL, Martin P, Sanders D (eds) (1995) Handbook of vacuum arc science and technology. Noyes Publishing, Ridge Park, NJ

  10. Beilis II (2001) IEEE Trans Plasma Sci 29:657

    Article  CAS  ADS  Google Scholar 

  11. Martin PJ, Bendavid A (2001) Thin Solid Films 394:1

    Article  CAS  ADS  Google Scholar 

  12. Ehrich H, Hasse B, Mausbach M, Muller KG (1990) J Vac Sci Technol A8(3):2160

    ADS  Google Scholar 

  13. Kajioka H (1997) J Vac Sci Technol A15:2728

    ADS  Google Scholar 

  14. Beilis II, Boxman RL, Goldsmith S (2000) Surf Coat Technol 133–134(1–3):91

    Article  Google Scholar 

  15. Beilis II, Boxman RL (2009) Surf Coat Technol 204:865

    Article  CAS  Google Scholar 

  16. Shashurin A, Beilis II, Boxman RL (2009) Plasma Sour Sci Technol 18:045004

    Article  ADS  Google Scholar 

  17. Beilis II, Snaiderman A, Boxman RL (2008) Surf Coat Technol 203(5–7):501

    Article  CAS  Google Scholar 

  18. Beilis II, Shashurin A, Arbilly D, Goldsmith S, Boxman RL (2004) Surf Coat Technol 177–178(1–3):233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak I. Beilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beilis, I.I., Koulik, Y., Boxman, R.L. et al. Thin film deposition using a plasma source with a hot refractory anode vacuum arc. J Mater Sci 45, 6325–6331 (2010). https://doi.org/10.1007/s10853-010-4452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4452-1

Keywords

Navigation