Skip to main content
Log in

Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Scanning and transmission electron microscopy were used to study the interface composition and morphology of copper wire-bonds heat-treated at 175 °C for 2, 24, 96, and 200 h in argon. Detailed morphological and compositional characterization of the Al–Cu heat-treated interfaces was conducted on site-specific specimens prepared by focused ion beam milling. Discontinuous intermetallic grains with varying size and morphology were found to grow in regions where they originally nucleated during the bonding process. The main intermetallic phase was Al2Cu, which was found to grow via solid-state diffusion. In specimens heat-treated for 96 and 200 h, the Al4Cu9 phase was also detected. Void formation at the Al–Cu bonds heat-treated up to 200 h was not found to be a source of bond failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Harman G (1997) Wire bonding in microelectronics materials, processes, reliability and yield. McGraw-Hill, New York

    Google Scholar 

  2. Drozdov M, Gur G, Atzmon Z, Kaplan WD (2008) J Mater Sci. doi:https://doi.org/10.1007/s10853-008-2954-x

    Article  CAS  Google Scholar 

  3. Brydson R, Bruley J, Mullejans H, Scheu C, Ruhle M (1995) Ultramicroscopy 59(1–4):81. doi:https://doi.org/10.1016/0304-3991(95)00020-2

    Article  CAS  Google Scholar 

  4. Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5099. doi:https://doi.org/10.1007/s10853-006-0437-5

    Article  CAS  Google Scholar 

  5. Toyozawa K, Fujita K, Minamide S, Maeda T (1990) IEEE Trans Compon Hybr Manuf Technol 13(4):667. doi:https://doi.org/10.1109/33.62577

    Article  CAS  Google Scholar 

  6. Singh I Sr, On JY, Levine L Sr (2005) Proc Electron Compon Technol 55(1):843

    Google Scholar 

  7. Tan CW, Daud AR (2002) J Mater Sci Mater Electron 13(5):309. doi:https://doi.org/10.1023/A:1015580227090

    Article  CAS  Google Scholar 

  8. Murali S, Srikanth N, Vath CJ (2003) Mater Charact 50(1):39. doi:https://doi.org/10.1016/S1044-5803(03)00102-5

    Article  CAS  Google Scholar 

  9. Wulff FW, Breach CD, Saraswati SD, Dittmer KJ (2004) Proceedings of electronics packaging technology confernce, Singapore, 8–10 December, p 348

  10. Onuki J, Koizumi M, Araki I (1987) IEEE Trans Compon Hybr Manuf Technol 10(4):550. doi:https://doi.org/10.1109/TCHMT.1987.1134799

    Article  Google Scholar 

  11. Ratchev P, Stoukatch S, Swinnen B (2006) Microelectron Reliab 46(8):1315. doi:https://doi.org/10.1016/j.microrel.2005.11.002

    Article  CAS  Google Scholar 

  12. Kim H-J, Lee JY, Paik K-W et al (2003) IEEE Trans Compon Packag Tech 26(2):367. doi:https://doi.org/10.1109/TCAPT.2003.815121

    Article  CAS  Google Scholar 

  13. Murali S, Srikanth N, Wong YM, Vath CJ (2007) J Mater Sci 42(2):615. doi:https://doi.org/10.1007/s10853-006-1148-7

    Article  CAS  Google Scholar 

  14. Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2334. doi:https://doi.org/10.1007/s10853-007-1592-z

    Article  CAS  Google Scholar 

  15. Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2347. doi:https://doi.org/10.1007/s10853-007-1593-y

    Article  CAS  Google Scholar 

  16. Murali S, Srikanth N, Vath CJ (2006) J Electron Packag 128(3):192. doi:https://doi.org/10.1115/1.2229214

    Article  CAS  Google Scholar 

  17. Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) Mater Charact. doi:https://doi.org/10.1016/j.matchar.2008.02.007

    Article  CAS  Google Scholar 

  18. Murray JL (1985) Int Met Rev 30(5):211

    CAS  Google Scholar 

  19. Hill A, Wallach ER (1989) Acta Metall 37(9):2425. doi:https://doi.org/10.1016/0001-6160(89)90040-0

    Article  CAS  Google Scholar 

  20. Takahashi Y, Inoue K, Nishiguchi K (1993) Acta Metall Mater 41(11):3077. doi:https://doi.org/10.1016/0956-7151(93)90036-R

    Article  CAS  Google Scholar 

  21. Hamm RA, Vandenberg JM (1984) J Appl Phys 56(2):293. doi:https://doi.org/10.1063/1.333960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Berner, Y. Kauffmann, and I. Popov for fruitful discussions. This research was partially supported by the Russell Berrie Nanotechnology Institute at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, M., Gur, G., Atzmon, Z. et al. Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing. J Mater Sci 43, 6038–6048 (2008). https://doi.org/10.1007/s10853-008-2955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2955-9

Keywords

Navigation