Skip to main content
Log in

Stabilization of nanocrystalline grain sizes by solute additions

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper will review the grain growth in nanocrystalline materials with emphasis on the grain size stabilization that can result from solute additions. The grain growth in nominally pure nanocrystalline metals will be presented followed by descriptions of the stabilization of nanocrystalline grain sizes by kinetic approaches and thermodynamic strategies. The descriptions of nanocrystalline grain size by solute additions will be taken from the literature as well as from recent research in the authors’ laboratory. Examples of kinetic stabilization, which involves reduction of the grain boundary mobility, include second phase drag, solute drag, chemical ordering, and grain size stabilization. The thermodynamic stabilization, which is due to the lowering of the specific grain boundary energy by solute segregation to the grain boundaries, will be described for systems including Pd–Zr, Fe–Zr, Ni–W, Ni–P, and Co–P. Recrystallization during grain growth will be presented for the Ti–N system. Finally, a summary of alloys where nanocrystalline grain sizes can be maintained at annealing temperatures close to the melting point will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suryanarayana C (1995) Int Mater Rev 40:41

    Article  CAS  Google Scholar 

  2. Weissmuller J (1996) Synthesis and processing of nanocrystalline powder. In: Bourell DL (ed) TMS, Warrendale, PA, p 3

  3. Malow TR, Koch CC (1996) Synthesis and processing of nanocrystalline powder. In: Bourell DL (ed) TMS, Warrendale, PA, p 33

  4. Hofler HJ, Averback RS (1990) Scr Metall Mater 24:2401. doi:https://doi.org/10.1016/0956-716X(90)90101-L

    Article  Google Scholar 

  5. Boylan K, Osstrander D, Erb U, Palumbo G, Aust KT (1991) Scr Metall Mater 25:2711. doi:https://doi.org/10.1016/0956-716X(91)90144-P

    Article  CAS  Google Scholar 

  6. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143. doi:https://doi.org/10.1016/S1359-6454(99)00079-8

    Article  CAS  Google Scholar 

  7. Gao Z, Fultz B (1994) NanoStructured Mater 4:939. doi:https://doi.org/10.1016/0965-9773(94)90100-7

  8. Krill CE, Helfen L, Michels D, Natter H, Fitch A, Masson O et al (2001) Phys Rev Lett 86:842. doi:https://doi.org/10.1103/PhysRevLett.86.842

    Article  CAS  Google Scholar 

  9. Weissmuller J (1993) NanoStructured Mater 3:261. doi:https://doi.org/10.1016/0965-9773(93)90088-S

    Article  Google Scholar 

  10. Weissmuller J (1994) J Mater Res 9:4. doi:https://doi.org/10.1557/JMR.1994.0004

    Article  Google Scholar 

  11. Kirchheim R (2002) Acta Mater 50:413. doi:https://doi.org/10.1016/S1359-6454(01)00338-X

    Article  CAS  Google Scholar 

  12. Liu F, Kirchheim R (2004) Scr Mater 51:521. doi:https://doi.org/10.1016/j.scriptamat.2004.05.042

    Article  CAS  Google Scholar 

  13. Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55:2329. doi:https://doi.org/10.1016/j.actamat.2006.11.028

    Article  CAS  Google Scholar 

  14. Birringer R (1989) Mater Sci Eng A A117:33. doi:https://doi.org/10.1016/0921-5093(89)90083-X

    Article  Google Scholar 

  15. Gunther B, Kumpmann A, Kunze H-D (1992) Scr Metall Mater 27:833. doi:https://doi.org/10.1016/0956-716X(92)90401-Y

    Article  Google Scholar 

  16. Gertsman VY, Birringer R (1994) Scr Metall Mater 30:577. doi:https://doi.org/10.1016/0956-716X(94)90432-4

    Article  CAS  Google Scholar 

  17. Sanders PG, Weertman JR, Baker JG, Siegel RW (1993) Scr Metall Mater 29:91. doi:https://doi.org/10.1016/0956-716X(93)90260-Y

    Article  CAS  Google Scholar 

  18. Moelle CH, Fecht HJ (1995) NanoStructured Mater 6:421. doi:https://doi.org/10.1016/0965-9773(95)00086-0

    Article  CAS  Google Scholar 

  19. Michels A, Krill CE, Natter H, Birringer R (1998) Grain growth in polycrystalline materials III. In: Weiland H, Adams BL, Rollett AD (eds) TMS, Warrendale, PA, p 449

  20. Lu L, Tao NR, Wang LB, Ding BZ, Lu K (2001) J Appl Phys 89:6408. doi:https://doi.org/10.1063/1.1367401

    Article  CAS  Google Scholar 

  21. Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186. doi:https://doi.org/10.1557/JMR.1998.0169

    Article  CAS  Google Scholar 

  22. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena, Chapt 9. Elsevier Science Inc, Tarrytown, NY, pp 289–295

    Google Scholar 

  23. Krill CE, Ehrhardt H, Birringer R, Metallkd Z (2005) 96:1134

  24. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena, Chapt 9. Elsevier Science Inc, Tarrytown, NY, p 281

    Google Scholar 

  25. El-Sherik AM, Boylan D, Erb U, Palumbo G, Aust KT (1992) Mater Res Soc Symp Proc 238:727

    Article  CAS  Google Scholar 

  26. Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Trans A 29A:2469. doi:https://doi.org/10.1007/s11661-998-0218-7

    Article  CAS  Google Scholar 

  27. Shaw L, Luo H, Villegas J, Miracle D (2003) Acta Mater 51:2647. doi:https://doi.org/10.1016/S1359-6454(03)00075-2

    Article  CAS  Google Scholar 

  28. Knauth P, Charai A, Gas P (1993) Scr Metall Mater 28:325. doi:https://doi.org/10.1016/0956-716X(93)90436-V

    Article  CAS  Google Scholar 

  29. Gao Z, Fultz B (1993) NanoStructured Mater 2:231. doi:https://doi.org/10.1016/0965-9773(93)90150-A

    Article  CAS  Google Scholar 

  30. Bansal C, Gao Z, Fultz B (1995) NanoStructured Mater 5:327. doi:https://doi.org/10.1016/0965-9773(95)00236-8

    Article  CAS  Google Scholar 

  31. Lu K (1993) NanoStructured Mater 2:643. doi:https://doi.org/10.1016/0965-9773(93)90039-E

    Article  CAS  Google Scholar 

  32. Krill CE III, Helfen L, Michels D, Natter H, Fitch A, Masson O et al (2001) Phys Rev Lett 86:842. doi:https://doi.org/10.1103/PhysRevLett.86.842

    Article  CAS  Google Scholar 

  33. Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) Scr Mater 43:141. doi:https://doi.org/10.1016/S1359-6462(00)00383-3

    Article  CAS  Google Scholar 

  34. Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G (1998) Interface Sci 6:287

    CAS  Google Scholar 

  35. Hondros ED, Seah MP (1983) Physical metallurgy. In: Cahn RW, Haasen P (eds) 3rd edn. Elsevier Sci Pub BV, Netherlands, p 856

  36. Farber B, Cadel E, Menand A, Schmitz G, Kirchheim R (2000) Acta Mater 48:789. doi:https://doi.org/10.1016/S1359-6454(99)00397-3

    Article  CAS  Google Scholar 

  37. Liu KW, Mucklich F (2001) Acta Mater 49:395. doi:https://doi.org/10.1016/S1359-6454(00)00340-2

    Article  CAS  Google Scholar 

  38. Abe YR, Holzer JC, Johnson WL (1992) Mater Res Soc Symp Proc 238:721

    Article  CAS  Google Scholar 

  39. Abe YR, Johnson WL (1992) Mater Sci Forum 88–90:513

  40. Weissmuller J, Krauss W, Haubold T, Birringer R, Gleiter H (1992) NanoStructured Mater 1:439. doi:https://doi.org/10.1016/0965-9773(92)90076-A

    Article  Google Scholar 

  41. Terwilliger CD, Chiang YM (1995) Acta Mater 43:319

    Article  CAS  Google Scholar 

  42. Krill CE, Ehrhardt H, Birringer R (1997) Chemistry and physics of nanostructures and related non-equilibrium materials. In: Ma E, Fultz B, Shull R, Morral J, Nash P(eds) TMS, Warrendale, PA, pp 115–124

  43. Krill CE, Klein R, Janes S, Birringer R (1995) Mater Sci Forum 179–181:443

  44. Shapiro E, Wurschum R, Schaefer H-E, Ehrhardt H, Krill CE, Birringer R (2000) Mater Sci Forum 343–346:726

  45. Krill CE, Ehrhardt H, Birringer R, Metallkd R (2005) 96:1134

  46. De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals: transition metal alloys. North-Holland, Amsterdam, p 748

  47. Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 664

  48. Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Scripta Materialia 59:530

    Article  CAS  Google Scholar 

  49. Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 380

  50. Detor AJ, Schuh CA (2007) Acta Mater 55:371. doi:https://doi.org/10.1016/j.actamat.2006.08.032

    Article  CAS  Google Scholar 

  51. Detor AJ, Schuh CA (2007) Acta Mater 55:4221. doi:https://doi.org/10.1016/j.actamat.2007.03.024

    Article  CAS  Google Scholar 

  52. Okamoto H (ed) (2000) Phase diagrams for binary alloys. ASM International, Metals Park, OH, p 626

  53. Detor AJ, Miller JK, Schuh CA (2006) Philos Mag 86:4459. doi:https://doi.org/10.1080/14786430600726749

    Article  CAS  Google Scholar 

  54. Detor AJ, Schuh CA (2007) J Mater Res 22:3233. doi:https://doi.org/10.1557/jmr.2007.0403

    Article  CAS  Google Scholar 

  55. Choi P, Da Silva M, Klement U, Al-Kassab T, Kirchheim R (2005) Acta Mater 53:4473. doi:https://doi.org/10.1016/j.actamat.2005.06.006

    Article  CAS  Google Scholar 

  56. Sun F, Zuniga A, Rojas P, Lavernia EJ (2006) Metall Mater Trans A 37A:2069. doi:https://doi.org/10.1007/BF02586127

    Article  CAS  Google Scholar 

  57. Darling KA, Semones JE, Scattergood RO, Koch CC (2008) Unpublished research, North Carolina State University

  58. Botcharova E, Freudenberger J, Schultz L (2006) Acta Mater 54:3333. doi:https://doi.org/10.1016/j.actamat.2006.03.021

    Article  CAS  Google Scholar 

  59. Benghalem A, Morris DG (1992) Scr Metall Mater 27:739. doi:https://doi.org/10.1016/0956-716X(92)90498-4

    Article  CAS  Google Scholar 

  60. Botcharova E, Freudenberger J, Schultz L (2004) J Alloy Comp 365:157. doi:https://doi.org/10.1016/S0925-8388(03)00634-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Science Foundation for supporting their research on this topic under grant number DMR-0504286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, C.C., Scattergood, R.O., Darling, K.A. et al. Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43, 7264–7272 (2008). https://doi.org/10.1007/s10853-008-2870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2870-0

Keywords

Navigation