Skip to main content
Log in

Comparative study of heat-affected zone with weld and base material after post-weld heat treatment of HSLA steel using ball indentation technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ball indentation technique (BIT) is employed to study the effect of post-weld heat treatment on the mechanical properties of a high strength low alloy (HSLA) steel and subsequently on the quality of the weldment. Well-defined load-deflection curves and corresponding true stress–strain curves for different zones (base, HAZ, weld) of sectioned sample (top and middle) and their validation with mechanical properties obtained by conventional method established the effectiveness of the present ball indentation (BI) set up. Investigations on microstructure of all the zones have been carried out to find out a correlation with the obtained mechanical properties. Evaluation of the mechanical properties of materials through BIT could characterize the heat-affected zone in weld HSLA steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Webster PJ (1992) Welding handbook, 8th edn. American Welding Society, Miami

  2. Hara T, Asahi H (2000) Corrosion 56:533

    Article  CAS  Google Scholar 

  3. Bala Srinivasan P, Sharkawy SW, Dietzel W (2004) Mater Sci Eng A 385:6. doi:https://doi.org/10.1016/j.msea.2004.03.029

    Article  Google Scholar 

  4. Brass AM, Chêne J (2006) Corros Sci 48:481. doi:https://doi.org/10.1016/j.corsci.2005.01.007

    Article  CAS  Google Scholar 

  5. Carter TJ, Cornish LA (2001) Eng Fail Anal 8:113. doi:https://doi.org/10.1016/S1350-6307(99)00040-0

    Article  CAS  Google Scholar 

  6. Haggag FM, Byun TS, Hong JH, Miraglia PQ, Murty KL (1998) Scr Mater 38:645. doi:https://doi.org/10.1016/S1359-6462(98)00519-3

    Article  CAS  Google Scholar 

  7. Murty KL, Miraglia PQ, Mathew MD, Shah VN, Haggag FM (1999) Int J Pres Ves Pip 76:361. doi:https://doi.org/10.1016/S0308-0161(99)00006-X

    Article  CAS  Google Scholar 

  8. Haggag FM (2001) Residual stress measurement and general non-destructive evaluation. ASME 429:99

    Google Scholar 

  9. Byun TS, Hong JH, Haggag FM, Farrell K, Lee FH (1997) Int J Pres Ves Pip 74:231. doi:https://doi.org/10.1016/S0308-0161(97)00114-2

    Article  CAS  Google Scholar 

  10. Oliver WC, Pharr GM (1992) J Mater Res 7(5):1564

    Article  CAS  Google Scholar 

  11. Bolshakov A, Pharr GM (1998) J Mater Res 13(4):1049

    Article  CAS  Google Scholar 

  12. Oliver WC, Pharr GM (2004) J Mater Res 19(1):3

    Article  CAS  Google Scholar 

  13. Field JS, Swain MV (1995) J Mater Res 10(1):101

    Article  CAS  Google Scholar 

  14. Norbury AL, Samuel T (1928) JISI 117:673

    Google Scholar 

  15. Alcala J, Barone AC, Anglanda M (2000) Acta Mater 48:3451. doi:https://doi.org/10.1016/S1359-6454(00)00140-3

    Article  CAS  Google Scholar 

  16. Jang J-I, Choi Y, Lee Y-H, Kim D-J, Kim J-T (2003) J Mater Sci Lett 22:499. doi:https://doi.org/10.1023/A:1022926100980

    Article  CAS  Google Scholar 

  17. Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2003) Trans Indian Inst Met 56(5):465

    Google Scholar 

  18. Das G, Ghosh S, Ghosh S (2006) NDT Int 39:155. doi:https://doi.org/10.1016/j.ndteint.2005.06.011

    Article  CAS  Google Scholar 

  19. Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  20. Haggag FM, Namstad RK, Hutton JT, Thomas DL, Swain RL (1990) ASTM 1092, Philadelphia, p 188

  21. Timoshenko S (1934) Theory of elasticity. McGraw Hill, New York

    Google Scholar 

  22. Dieter GE (1998) Mechanical metallurgy. McGraw-Hill Book Company, Singapore

    Google Scholar 

  23. Meyer E (1908) Z Ver Dtsch Ing 52:645

    CAS  Google Scholar 

  24. Mathew MD, Murty KL, Rao KBS, Mannan SL (1999) Mater Sci Eng A 264:159. doi:https://doi.org/10.1016/S0921-5093(98)01098-3

    Article  Google Scholar 

  25. Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2004) Int J Mater Res Adv Tech Metallkunde 95:1120

    CAS  Google Scholar 

  26. Das G, Ghosh S, Ghosh S, Ghosh RN (2005) Mater Sci Eng A 408:158. doi:https://doi.org/10.1016/j.msea.2005.07.026

    Article  Google Scholar 

  27. Das G, Ghosh S, Sahay SK (2005) Mater Lett 59(18):2246. doi:https://doi.org/10.1016/j.matlet.2005.01.074

    Article  CAS  Google Scholar 

  28. Das G, Ghosh S, Bose SC, Ghosh S (2006) Mater Sci Eng A 424:326. doi:https://doi.org/10.1016/j.msea.2006.03.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. S. P. Mehrotra, Director, National Metallurgical Laboratory (NML), for his encouragement and permission to carry out and publish this work. They are also thankful to Dr. I. Chattoraj and Dr. G. V. S. Murthy of NML for their valuable assistance. One of the authors (Sabita Ghosh) thanks the Council of Scientific & Industrial Research (CSIR), India, for a fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Pal, T.K., Mukherjee, S. et al. Comparative study of heat-affected zone with weld and base material after post-weld heat treatment of HSLA steel using ball indentation technique. J Mater Sci 43, 5474–5482 (2008). https://doi.org/10.1007/s10853-008-2840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2840-6

Keywords

Navigation