Skip to main content
Log in

Synthesis and optical properties of CeO2 nanocrystalline films grown by pulsed electron beam deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanocrystalline cerium dioxide (CeO2) thin films were deposited on soda lime (SLG) and Corning glass by pulsed e-beam deposition (PED) method at room temperature. The structure of the produced CeO2 thin films was investigated by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and micro Raman spectroscopy. The surface topography of the films was examined by atomic force microscopy (AFM). Film thickness and growth morphologies were determined with FEG-SEM from the fracture cross sections. XPS studies gave a film composition composed of +4 and +3 valent cerium typical to nanocrystalline ceria structures deficient in oxygen. The ceria films were polycrystalline in nature with a lattice parameter (a) of 0.542 nm. The Raman characteristics of the source material and the films deposited were very similar in character. Raman lines for thin film and bulk CeO2 was observed at 465 cm−1. The optical properties of the CeO2 films were deduced from reflectance and transmittance measurements at room temperature. From the optical model, the refractive index was determined as 1.8–2.7 in the photon energy interval from 3.5 to 1.25 eV. The optical indirect band gap (Eg) of CeO2 nanocrystalline films was calculated as 2.58 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Becht M, Morishita T (1996) Chem Vap Deposition 2:191. doi:https://doi.org/10.1002/cvde.19960020508

    Article  CAS  Google Scholar 

  2. Al-Robaee MS, Krishna MG, Rao KN, Mohan S (1991) J Vac Sci Technol A 9:6. doi:https://doi.org/10.1116/1.577171

    Article  Google Scholar 

  3. Schwab RG, Steiner RA, Mages G, Beie HJ (1992) Thin Solid Films 207:283. doi:https://doi.org/10.1016/0040-6090(92)90139-3

    Article  CAS  Google Scholar 

  4. Chen MY, Zu XT, Xiang X, Zhang HL (2007) Physica B (Amsterdam) 389:263. doi:https://doi.org/10.1016/j.physb.2006.06.162

    Article  CAS  Google Scholar 

  5. Zhang DE, Ni XM, Zheng HG, Zhang XJ, Song JM (2006) Solid State Sci 8:1290. doi:https://doi.org/10.1016/j.solidstatesciences.2006.08.003

    Article  CAS  Google Scholar 

  6. Kanakaraju S, Mohan S, Sood AK (1997) Thin Solid Films 305:191. doi:https://doi.org/10.1016/S0040-6090(97)00081-3

    Article  CAS  Google Scholar 

  7. Yamshita M, Kameyama K, Yabe S, Yoshida S, Fujishiro Y, Kawai T et al (2002) J Mater Sci Lett 37:683

    Google Scholar 

  8. Özer N (2001) Sol Energy Mater Sol Cells 68:391. doi:https://doi.org/10.1016/S0927-0248(00)00371-8

    Article  Google Scholar 

  9. Porqueras I, Person C, Corbella C, Vives M, Pinyol A, Bertran E (2003) Solid State Ionics 165:131. doi:https://doi.org/10.1016/j.ssi.2003.08.025

    Article  CAS  Google Scholar 

  10. Malandrino G, Lo Nigro R, Benelli C, Castelli F, Fragala IL (2000) Chem Vap Deposition 6:233. doi:10.1002/1521-3862(200010)6:5<233::AID-CVDE233>3.0.CO;2-D

    Article  CAS  Google Scholar 

  11. Kim L, Kim J, Lee H, Jung D, Roh Y (2001) Jpn J Appl Phys 2(40):L564

    Article  Google Scholar 

  12. Hass G, Ramsay JB, Thun R (1958) J Opt Soc Am 48:324

    Article  CAS  Google Scholar 

  13. Baudry P, Rodrigues ACM, Aegerter M, Bulhoes LO (1990) Mater J Non-Cryst Solids 121:319. doi:https://doi.org/10.1016/0022-3093(90)90151-B

    Article  CAS  Google Scholar 

  14. Chin CC, Lin RJ, Yu YC, Wang CW, Lin EK, Tsai WC et al (1997). IEEE Trans Appl Superconduct 2:7

    Google Scholar 

  15. Patel M, Kim K, Ivill M, Budai JD, Norton DP (2004) Thin Solid Films 468:1. doi:https://doi.org/10.1016/j.tsf.2004.02.105

    Article  CAS  Google Scholar 

  16. Masetti E, Varsano F, Decker F, Krasilnikova A (2001) Electrochim Acta 46:2085. doi:https://doi.org/10.1016/S0013-4686(01)00410-8

    Article  CAS  Google Scholar 

  17. Hirschauer B, Chiaia G, Gothelid M, Karlsson UO (1999) Thin Solid Films 348:3. doi:https://doi.org/10.1016/S0040-6090(98)01759-3

    Article  CAS  Google Scholar 

  18. Karakaya K, Barcones B, Rittersma ZM, Van Berkum JGM, Verheijen MA, Rijinders G et al (2006) Mater Sci Semiconductor Process 9:1061

    Article  CAS  Google Scholar 

  19. Koo WH, Jeoung SM, Choi SH, Jo SJ, Baik HK, Lee SJ et al (2004) Thin Solid Films 468:28. doi:https://doi.org/10.1016/j.tsf.2004.03.042

    Article  CAS  Google Scholar 

  20. Elidrissi B, Addou M, Regragui M, Monty C, Bougrine A, Kachouane A (2000) Thin Solid Films 379:23. doi:https://doi.org/10.1016/S0040-6090(00)01404-8

    Article  CAS  Google Scholar 

  21. Ghodsi FE, Tepehan FZ (2006) Phys Status Solidi A 203:526. doi:https://doi.org/10.1002/pssa.200521309

    Article  CAS  Google Scholar 

  22. Reisfeld R, Zayat M, Minti H, Zastrow A (1998) Sol Energy Mater Sol Cells 54:109. doi:https://doi.org/10.1016/S0927-0248(98)00061-0

    Article  CAS  Google Scholar 

  23. Keomany D, Pettit JP, Deroo D (1995) SPIE Proc 2255:513

    Google Scholar 

  24. Pollard KD, Jenkins HA, Puddephatt RJ (2000) Chem Mater 12:701. doi:https://doi.org/10.1021/cm990455r

    Article  CAS  Google Scholar 

  25. Barreca D, Gasparotto A, Tondello E, Sada C, Polizzi S, Benedetti A (2003) Chem Vap Deposition 4:9

    Google Scholar 

  26. Barreca D, Bruno G, Gasparotto A, Losurdo M, Tondello E (2003) Mater Sci Eng C 23:1013. doi:https://doi.org/10.1016/j.msec.2003.09.103

    Article  CAS  Google Scholar 

  27. Lee DF, Christen HM, List FA, Heatherly L, Leonard KJ, Rouleau CM, Cook SW, Martin PM, Paranthaman M, Goyal A (2005) Physica C 426–431:878

    Article  CAS  Google Scholar 

  28. Guo YF, Chen LM, Lei M, Guo X, Li PG, Tang WH (2006) Physica C 450:96. doi:https://doi.org/10.1016/j.physc.2006.08.017

    Article  CAS  Google Scholar 

  29. Choudhary RJ, Ogale SB, Shinde SR, Kulkarni VN, Venkatesan T, Harshavardhan KS et al (2004) Appl Phys Lett 84:1483. doi:https://doi.org/10.1063/1.1651326

    Article  CAS  Google Scholar 

  30. Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. Wiley, New York

    Google Scholar 

  31. Qiu L, Liu F, Zhao L, Ma Y, Yao J (2006) Appl Surf Sci 252:4931. doi:https://doi.org/10.1016/j.apsusc.2005.07.024

    Article  CAS  Google Scholar 

  32. Zhang F, Wang P, Koberstein J, Khalid S, Chan SW (2004) Surf Sci 563:74. doi:https://doi.org/10.1016/j.susc.2004.05.138

    Article  CAS  Google Scholar 

  33. Chuang FY, Yang SM (2008) J Colloid Interface Sci 320:194. doi:https://doi.org/10.1016/j.jcis.2008.01.015

    Article  CAS  Google Scholar 

  34. Deshpande S, Patil S, Kuchibhatla S (2005) Appl Phys Lett 87:133113. doi:https://doi.org/10.1063/1.2061873

    Article  CAS  Google Scholar 

  35. Patsalas P, Logothetidis S, Metaxa C (2002) Appl Phys Lett 81:466. doi:https://doi.org/10.1063/1.1494458

    Article  CAS  Google Scholar 

  36. Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178. doi:https://doi.org/10.1103/PhysRevB.48.178

    Article  CAS  Google Scholar 

  37. Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407. doi:https://doi.org/10.1103/PhysRevB.64.245407

    Article  CAS  Google Scholar 

  38. Siokou A, Ntais S, Dracopoulos V, Papaefthimiou S, Leftheriotis G, Yianoulis P (2006) Thin Solid Films 514:87. doi:https://doi.org/10.1016/j.tsf.2006.02.077

    Article  CAS  Google Scholar 

  39. Odo GY, Nogueira LN, Lepienski CM (1999) J Non-Cryst Solids 247:232. doi:https://doi.org/10.1016/S0022-3093(99)00076-9

    Article  CAS  Google Scholar 

  40. Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G (2004) Nucl Instrum Meth Phys Res B 218:176

    Article  CAS  Google Scholar 

  41. Heavens OS (1991) Optical properties of thin solid films. Dover, New York

    Google Scholar 

  42. Pankove JI (1971) Optical process in semiconductors. Prentice-Hall

Download references

Acknowledgements

The authors gratefully acknowledge JEOL-Japan for the valuable support they have given in XPS measurements and Dr. Gültekin Göller and H. Sezer for the FEG-SEM investigations. This study is partially supported through the “Advances Technologies in Engineering” project financed by State Planning Organization of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tatar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatar, B., Sam, E.D., Kutlu, K. et al. Synthesis and optical properties of CeO2 nanocrystalline films grown by pulsed electron beam deposition. J Mater Sci 43, 5102–5108 (2008). https://doi.org/10.1007/s10853-008-2750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2750-7

Keywords

Navigation