Skip to main content
Log in

Hierarchical modelling of a polymer matrix composite

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limits of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hierarchical modelling scheme to predict the properties of a polymer matrix composite is introduced. The stress–strain curves of amine-cured tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) cured have been predicted using group interaction modelling (GIM). The GIM method, originally applied primarily to linear polymers, has been significantly extended to give accurate, consistent results for TGDDM, a highly crosslinked two-component matrix. The model predicts a complete range of temperature-dependent properties, from fundamental energy contributions, through engineering moduli to full stress–strain curves through yield. The predicted properties compare very well with experiment. Using the GIM-predicted TGDDM stress–strain curve, a 3D finite element model is used to obtain strain concentration factors (SCF) of fibres adjacent to a fibre break in a unidirectional (UD) composite. The strain distribution among the intact neighbouring fibres is clearly affected by the yielding mechanism in the resin matrix. A Monte Carlo simulation is carried out to predict the tensile failure strain of a single composite layer with the thickness equal to the fibre ineffective length. The effect of matrix shear yielding is introduced to the model through the SCF of surviving fibres adjacent to the fibre-break. The tensile failure strain of the composite is then predicted using a statistical model of a chain of composite layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pham HQ, Marks MJ (2002) Epoxy resins. In: Encyclopedia of polymer science and technology. Wiley

  2. Gupta A, Cizmecioglu M, Coulter D, Liang RH, Yavrouian A, Tsay FD, Moacanin J (1983) J Appl Polym Sci 28:1011. doi:https://doi.org/10.1002/app. 1983.070280309

    Article  Google Scholar 

  3. Jones FR (2005) In: Soutis C, Beaumont PWR (eds) Multi-scale modelling of composite material systems: the art of predictive damage modelling. Woodhead publishing limited, Cambridge, p 528

    Google Scholar 

  4. Porter D (1995) Group interaction modelling of polymer properties. Marcel Dekker, New York

    Google Scholar 

  5. Foreman JP, Porter D, Behzadi S, Travis KP, Jones FR (2006) J Mater Sci 41:6631. doi:https://doi.org/10.1007/s10853-006-0202-9

    Article  CAS  Google Scholar 

  6. Gumen VR, Jones FR, Attwood D (2001) Polymer 42:5717. doi:https://doi.org/10.1016/S0032-3861(00)00930-7

    Article  CAS  Google Scholar 

  7. Liu HP, Uhlherr A, Bannister MK (2004) Polymer 45:2051. doi:https://doi.org/10.1016/j.polymer.2004.01.008

    Article  CAS  Google Scholar 

  8. Porter D, Vollrath F, Shao Z (2005) Eur Phys J E 16:199. doi:https://doi.org/10.1140/epje/e2005-00021-2

    Article  CAS  Google Scholar 

  9. Vollrath F, Porter D (2006) Appl Phys A-Mater Sci Process 82:205. doi:https://doi.org/10.1007/s00339-005-3437-4

    Article  CAS  Google Scholar 

  10. Rosen BW (1964) AIAA J 2:1985

    Article  Google Scholar 

  11. Zweben C (1968) AIAA J 6:2325

    Article  Google Scholar 

  12. Zweben C, Rosen W (1970) J Mech Phys Solids 18:189. doi:https://doi.org/10.1016/0022-5096(70)90023-2

    Article  Google Scholar 

  13. Lane R, Hayes SA, Jones FR (2001) Compos Sci Technol 61:565. doi:https://doi.org/10.1016/S0266-3538(00)00229-3

    Article  CAS  Google Scholar 

  14. Behzadi S, Curtis PT, Jones FR (2007) Proceedings of ICCM-16, Kyoto

  15. Hedgepeth JM, van Dyke P (1967) J Compos Mater 1:294

    Article  Google Scholar 

  16. Wada A, Fukuda H (1999) Compos Sci Technol 59:89. doi:https://doi.org/10.1016/S0266-3538(98)00052-9

    Article  Google Scholar 

  17. LienKamp M, Schwartz P (1993) Compos Sci Technol 46:139. doi:https://doi.org/10.1016/0266-3538(93)90169-H

    Article  Google Scholar 

  18. Fukuda H, Kawata K (1977) Fibre Sci Technol 10:53. doi:https://doi.org/10.1016/0015-0568(77)90028-8

    Article  Google Scholar 

  19. Manders PW, Bader MG, Chou TW (1982) Fibre Sci Technol 17:183. doi:https://doi.org/10.1016/0015-0568(82)90003-3

    Article  Google Scholar 

  20. Ochiai S, Osamura K (1988) J of Mater Sci 23:886. doi:https://doi.org/10.1007/BF01153984

    Article  Google Scholar 

  21. Curtin WA, Takeda N (1998) J Compos Mater 32:2060

    Article  CAS  Google Scholar 

  22. Curtis PT (1986) Compos Sci Technol 27:63. doi:https://doi.org/10.1016/0266-3538(86)90063-1

    Article  CAS  Google Scholar 

  23. Williams JG (1979) J Appl Polym Sci 23:3433. doi:https://doi.org/10.1002/app.1979.070231201

    Article  CAS  Google Scholar 

  24. ANSYS Inc.: reference manual, 2006

  25. Nedele MR (1996) In: Department of Aerospace Engineering, University of Bristol, Bristol

  26. Box GEP, Muller ME (1958) Ann Math Stat 29:610. doi:https://doi.org/10.1214/aoms/1177706645

    Article  Google Scholar 

  27. Bader MG, Priest AM (1982) ICCM-IV, Tokyo, pp 1159–1136

  28. Tarasov VV (1965) Russ J Phys Chem 39:1109

    Google Scholar 

  29. Tarasov VV (1953) Zh Fiz Khim 27:1430

    CAS  Google Scholar 

  30. Kozey VV, Kumar S (1994) J Mater Res 9:2717. doi:https://doi.org/10.1557/JMR.1994.2717

    Article  CAS  Google Scholar 

  31. Phoenix SL, Schwartz P, Robinson HH (1988) Compos Sci Technol 32:81. doi:https://doi.org/10.1016/0266-3538(88)90001-2

    Article  CAS  Google Scholar 

  32. Behzadi S (2006) PhD thesis, Department of Engineering Materials, University of Sheffield, Sheffield

  33. Caballero-Martinez MI (2004) PhD thesis, Department of Engineering Materials, University of Sheffield, Sheffield, p 217

  34. Behzadi S, Jones FR (2005) J Macromol Sci-Part B: Phys 44:993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of Weapons and Platform Effectors Domain of the MoD Research Program. The authors would like to thank the UK EPSRC for part funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Jones.

Glossary

Glossary

A :

Loss factor

B :

Bulk modulus

C p :

Heat capacity

E :

Young’s modulus in tension

E total :

Total GIM energy

E coh :

Cohesive energy

Ecoh (0 K):

Cohesive energy at 0 K

f :

Characteristic vibrational frequency of the polymer chain

H T :

Thermal energy

ΔHβ :

Activation energy of the beta transition

h:

Planck’s constant

k:

Boltzmann’s constant

L :

Length of the mer unit

M :

Molecular weight of the mer unit

N :

Degrees of freedom

ΔN :

Degrees of freedom change for a single beta event

R:

Gas constant

r :

Strain rate

T :

Temperature

T g :

Glass transition temperature

T β :

Beta transition temperature

ΔT :

Temperature change for a single beta event

tanΔβ :

Cumulative loss tangent through the beta transition

tanδ :

Local total loss tangent

V :

Volume of the mer unit

V w :

van der Waal’s volume of the mer unit

z i :

Normal random numbers

z l :

Probability of layer failure

α l :

Linear thermal expansion coefficient

α v :

Volumetric thermal expansion coefficient

ε :

Full strain

ε e :

Elastic strain contribution

\( \bar \varepsilon _{{{\text{composite}}}} \) :

Average failure strain of a size of composite

\( \bar \varepsilon _{{{\text{if}}}} \) :

Average failure strain of composite layer

μ:

Mean fibre failure strain

ν :

Poisson’s ratio

θ 1 :

Debye temperature normal to polymer chain axis

ρ :

Density

σ :

Standard fibre failure strain

σ c :

Compressive stress

σ l :

Standard deviation of layer failure strain

σ y :

Compressive yield stress

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foreman, J.P., Behzadi, S., Porter, D. et al. Hierarchical modelling of a polymer matrix composite. J Mater Sci 43, 6642–6650 (2008). https://doi.org/10.1007/s10853-008-2688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2688-9

Keywords

Navigation