Skip to main content
Log in

Poly(thiophenylanilino) and poly(furanylanilino) polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel hybrid polymers with thiophenylanilino and furanylanilino backbones and substituted phenyl side groups are reported. The new monomers bis-(4-heterocyclic-2-yl-phenyl)-aryl-amine (heterocyclic = thiophen with aryl = 4-benzoyl (2a), 4-nitro-phenyl (2b) and furan with aryl = 4-benzoyl-phenyl (3a), 4-nitro-phenyl (3b)) were prepared by monosubstituting triphenylamine under electrophilic aromatic conditions affording 4-nitrotriphenylamine and 4-benzoyltriphenylamine. Di(bromination) of the latter compounds followed by Stille cross-coupling reactions with 2-tributylstannylthiophene or 2-tributylstannylfuran produces the new monomers 2a–b and 3a–b in high yield. The monomers are electrochemically polymerized at relatively low potentials (<0.8 V versus Ag+/AgCl) in acetonitrile electrolytes resulting in electroactive films. All the new polymers can be repeatedly oxidized and reduced with little loss of electrochemical activity. Vibrational spectroscopy reveals that the monomer units are connected predominately via coupling of the thiophenyl or furanyl rings yielding the novel polymers. Single-crystal molecular structure determinations of 4-nitrotriphenylamine and monomer 3b indicate the importance of the electron-withdrawing groups on the pendent phenyl groups in determining the extent of delocalization of the extended multi-ring systems. Molecular orbital calculations suggest that the HOMO of 2b is delocalized about both anilino and thiophenyl portions of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chollet P-A (1987) Rev Phys Appl 22:1221

    CAS  Google Scholar 

  2. Nalwa HS (1993) Adv Mater 5:341. doi:https://doi.org/10.1002/adma.19930050504

    CAS  Google Scholar 

  3. Choi KS, Kwak JG, Lee CH, Kim H, Char KH, Kim DY, Zentel R (2008) Poly Bull 59:795. doi:https://doi.org/10.1007/s00289-007-0815-4

    CAS  Google Scholar 

  4. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99. doi:https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9

    CAS  Google Scholar 

  5. Sim JH, Yamada K, Lee SH, Nokokura S, Sato H (2007) Syn Met 157:940. doi:https://doi.org/10.1016/j.synthmet.2007.09.009

    CAS  Google Scholar 

  6. Chahma M, Gilroy JB, Hicks RG (2007) J Mater Chem 17:4768. doi:https://doi.org/10.1039/b711693d

    CAS  Google Scholar 

  7. MacDiarmid AG, Mu SL, Somasiri MLD, Wu W (1985) Mol Cryst Liq Cryst 121:187. doi:https://doi.org/10.1080/00268948508074859

    CAS  Google Scholar 

  8. Kitani A, Kaya M, Sasaki K (1986) J Electrochem Soc 133:1069. doi:https://doi.org/10.1149/1.2108787

    CAS  Google Scholar 

  9. Ghosh S, Inganäs O (1999) Adv Mater 11:1214. doi:https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO;2-3

    CAS  Google Scholar 

  10. Kalaji M, Murphy PJ, Williams GO (1999) Syn Met 102:1360. doi:https://doi.org/10.1016/S0379-6779(98)01334-4

    CAS  Google Scholar 

  11. Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164. doi:https://doi.org/10.1016/S0378-7753(01)00892-8

    CAS  Google Scholar 

  12. Fusalba F, Ho HA, Breau L, Bélanger D (2000) Chem Mater 12:2581. doi:https://doi.org/10.1021/cm000011r

    CAS  Google Scholar 

  13. Strohriegl P, Grzulevicius JV (2002) Adv Mater 14:1439. doi:https://doi.org/10.1002/1521-4095(20021016)14:20<1439::AID-ADMA1439>3.0.CO;2-H

    CAS  Google Scholar 

  14. Wang H, Ryu JT, Kim DU, Han YS, Park LS, Cho HY, Lee SJ, Kwon Y (2007) Mol Cryst Liq Cryst 471: 279. doi:https://doi.org/10.1080/15421400701548506

    CAS  Google Scholar 

  15. Sicot L, Geffroy B, Lorin A, Raimond P, Sentein C, Nunzi J-M (2001) J Appl Phys 90:1047. doi:https://doi.org/10.1063/1.1378064

    CAS  Google Scholar 

  16. Yoshino K, Tada K, Fujii A, Conwell EM, Zakhidov AA (1997) IEEE Trans Electron Dev 44:1315. doi:https://doi.org/10.1109/16.605474

    CAS  Google Scholar 

  17. Shirota Y (2000) J Mater Chem 10:1. doi:https://doi.org/10.1039/a908130e

    CAS  Google Scholar 

  18. Ishikawa M, Kawai M, Ohsawa Y (1991) Syn Met 40:231. doi:https://doi.org/10.1016/0379-6779(91)91778-9

    CAS  Google Scholar 

  19. McKeown NB, Badriya S, Helliwell M, Shkunov M (2007) J Mater Chem 17:2088. doi:https://doi.org/10.1039/b614235d

    CAS  Google Scholar 

  20. Strzelec K, Fugino N, Ha J, Ogino K, Sato H (2002) Macromol Chem Phys 203:2488. doi:https://doi.org/10.1002/macp.200290031

    CAS  Google Scholar 

  21. Bellmann E, Shaheen SE, Thayumanavan S, Barlow S, Grubbs RH, Marder SR, Kippelen B, Peyghambarian N (1998) Chem Mater 10:1668. doi:https://doi.org/10.1021/cm980030p

    Google Scholar 

  22. Feigenbaum WM, Michel RH (1971) J Poly Sci Part A-1: Poly Chem 9:817. doi:https://doi.org/10.1002/pol.1971.150090322

    CAS  Google Scholar 

  23. Eberson L, Hartshorn MP, Svensson JO (1997) Acta Chem Scand 51:279

    CAS  Google Scholar 

  24. Gaussian 03, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CT

  25. Wright ME, Jin M-J (1989) J Org Chem 54:965. doi:https://doi.org/10.1021/jo00265a043

    CAS  Google Scholar 

  26. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359. doi:https://doi.org/10.1021/cr000664r

    CAS  Google Scholar 

  27. Stille JK (1986) Angew Chem Int Ed Engl 25:508. doi:https://doi.org/10.1002/anie.198605081

    Google Scholar 

  28. Hoshino M, Degenkolb P, Curran DP (1997) J Org Chem 62: 8341. doi:https://doi.org/10.1021/jo9709413

    CAS  Google Scholar 

  29. Brody MS, Finn MG (1999) Tetrahedron 40:415. doi:https://doi.org/10.1016/S0040-4039(98)02384-3

    CAS  Google Scholar 

  30. Sobolev AN, Belsky VK, Romm IP, Chernikova NY (1985) Acta Crysta Sect C 41:967. doi:https://doi.org/10.1107/S0108270185006217

    Google Scholar 

  31. Kongrev DV, Kovalevsky AY, Litvinov AL, Drichko NV, Tarasov BP, Coppens P, Lyubovskaya RN (2002) J Solid State Chem 168:474. doi:https://doi.org/10.1006/jssc.2002.9732

    Google Scholar 

  32. Manifor T, Rohani S, Jennings MS (2004) Acta Cryst Sect E 60:o2301. doi:https://doi.org/10.1107/S1600536804028247

    Google Scholar 

  33. Stechan E (1987) Top Curr Chem 147:1

    Google Scholar 

  34. Eberson L, Larsson B (1986) Acta Chem Scand Ser B 40:210

    Google Scholar 

  35. Demirboğa B, ÖNal AM (1999) Syn Met 99:237. doi:https://doi.org/10.1016/S0379-6779(98)01509-4

    Google Scholar 

  36. Wan X, Yan F, Jin S, Liu X, Xue G (1999) Chem Mater 11:2400. doi:https://doi.org/10.1021/cm9900453

    CAS  Google Scholar 

  37. Gök A, Sari B, Talu M (2005) J Appl Poly Sci 98: 2440. doi:https://doi.org/10.1002/app.22439

    Google Scholar 

  38. Wan X-B, Li LHJ-B, Zhou D-S, Xue G, Wang T-W (2002) J Appl Poly Sci 86:3160. doi:https://doi.org/10.1002/app.11343

    CAS  Google Scholar 

  39. Zotti G, Schiavon G, Zecchin S (1995) Syn Met 72:275. doi:https://doi.org/10.1016/0379-6779(95)03280-0

    CAS  Google Scholar 

  40. Son JM, Sakaki Y, Ogino K, Sato H (1997) IEEE Trans Electron Dev 44:1307. doi:https://doi.org/10.1109/16.605473

    CAS  Google Scholar 

  41. Goodson FE, Hauck SI, Hartwig JF (1999) J Am Chem Soc 121:7527. doi:https://doi.org/10.1021/ja990632p

    CAS  Google Scholar 

  42. Laforgue A, Simon P, Fauvarque J-F (2001) Syn Met 123:311. doi:https://doi.org/10.1016/S0379-6779(01)00296-X

    CAS  Google Scholar 

  43. Fu Y, Lie L, Yu H-Z, Wang Y-M, Guo Q-X (2005) J Am Chem Soc 127:7227. doi:https://doi.org/10.1021/ja0421856

    CAS  Google Scholar 

  44. Miyata Y, Nishinaga T, Komatsu K (2005) J Org Chem 70: 1147. doi:https://doi.org/10.1021/jo048282z

    CAS  Google Scholar 

Download references

Acknowledgement

NP thanks the Strategic Environmental Research and Development Program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Prokopuk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, L.C., Chafin, A.P., Deschamps, J.R. et al. Poly(thiophenylanilino) and poly(furanylanilino) polymers. J Mater Sci 43, 4182–4191 (2008). https://doi.org/10.1007/s10853-008-2598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2598-x

Keywords

Navigation