Skip to main content
Log in

Micromechanical properties of grain boundaries and triple junctions in polycrystalline metal exhibiting grain-boundary sliding at 293 K

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of grain boundaries (GBs) and the development of grain-boundary sliding (GBS) were studied in the pure Zn using precision microindentation technique, optical, electron and atomic-force microscopy. Results have shown the different dependencies of the microhardness values on the indentation depth for GBs and individual grains. When the size of the plastic zone around the imprint was comparable to the grain size, GBs acted as barriers for dislocation sliding bands and twins. With applying the higher load, more grains were involved in the process of deformation, but microhardness did not increase. That was explained by the activation of GBS, leading to the relaxation processes. In its turn, the microhardness values measured at low loads in the vicinity to GBs and triple junctions (TJs) were higher than those measured in the grain interior. Thus, movement of the ensemble of defects to the GBs during microindentation is the activating factor for GBS in polycrystalline Zn. At the same time, during spreading of the deformation at low loads in the vicinity to GBs the activation of GBS was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gleiter H, Chalmers B (1972) In: High-angle grain boundaries. Pergamon press, Oxford, p 303

  2. Sutton AP, Baluffi RW (1995) In: Interfaces in crystalline materials. OUP, Oxford, p 856

  3. Langdon TG (2006) J Mater Sci 41:597. doi:https://doi.org/10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  4. Esquil EV, Murr LE (2005) Mater Sci Eng A 409:13

    Article  Google Scholar 

  5. Meyers MA, Mishra A, Benson DJ (2006) Nanotechnology April:41

    Google Scholar 

  6. Shen Y-L, Abell KCR, Garrett SE (2004) Damage Mech 13:225

    Article  CAS  Google Scholar 

  7. Pervezentsev VN, Ribin VV, Chuvil’deev VN (1992) Acta Met Mater 40:887

    Article  Google Scholar 

  8. Lagow BW, Robertson IM, Jouiad M, Lassila DH, Lee TC, Birnbaum HK (2001) Mater Sci Eng A309–310:445

    Article  Google Scholar 

  9. Leae TC, Robertson IM, Birnbaum HK (1990) Phil Mag A 62:131

    Article  Google Scholar 

  10. Gouldstone A, Chollacoop N, Dao M, Li J, Minor A, Shen Y-L (2007) Acta Mater 55:4015

    Article  CAS  Google Scholar 

  11. Sheikh-Ali AD, Valiev RZ (1994) Mater Sci Forum 170–172:1017

    Google Scholar 

  12. Muktepavela F, Maniks J (2002) Interface Sci 10:21

    Article  CAS  Google Scholar 

  13. Braunovic M (1973) In: Westbrook JH, Conrad H (eds) The science of hardness testing and its research applications. ASM International, p 329

  14. Hockey BJ (1973) In: Westbrook JH, Conrad H (eds) The science of hardness testing and its research applications. ASM International, p 21

  15. Soifer YaM, Verdyan A, Kazakevich M, Rabkin E (2002) Scripta Mater 47:799

    Article  CAS  Google Scholar 

  16. Soer WA, Aifantis KE, De Hosson JThM (2005) Acta Mater 53:4665

    Article  CAS  Google Scholar 

  17. Ohmura T, Tsuzaki K, Yin F (2005) Mater Trans 46:2026

    Article  CAS  Google Scholar 

  18. Aust KT, Hanneman RE, Niessen P, Westbrook JH (1968) Acta Met 16:291

    Article  CAS  Google Scholar 

  19. Kobayashi S, Tsurekawa S, Watanabe T (2005) Acta Mater 53:1051

    Article  CAS  Google Scholar 

  20. Sursaeva V, Straumal B (2005) Materialwiss Werkstofftech 36:528

    Article  CAS  Google Scholar 

  21. Upit GP, Varchenya SA (1973) In: Westbrook JH, Conrad H (eds) The science of hardness testing and its research applications. ASM International, p 135

  22. Durst K, Backes S, Goeken M (2005) Scripta Mater 52:1093

    Article  CAS  Google Scholar 

  23. Yang B, Vehoff H (2007) Acta Mater 55:849

    Article  CAS  Google Scholar 

  24. Varchenya SA, Muktepavel FO, Upit GP (1970) Phys Stat Sol (a) 1:K165

    Article  Google Scholar 

  25. Nix WD, Gao HJ (1998) J Mech Phys Sol 46:411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project INTAS (05-1000008-8120), Russian Foundation for Basic Research (06-0204015), and Latvian Science Council (grant number 05.1705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Muktepavela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muktepavela, F., Bakradze, G. & Sursaeva, V. Micromechanical properties of grain boundaries and triple junctions in polycrystalline metal exhibiting grain-boundary sliding at 293 K. J Mater Sci 43, 3848–3854 (2008). https://doi.org/10.1007/s10853-008-2465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2465-9

Keywords

Navigation