Skip to main content
Log in

Emerging biodegradable materials: starch- and protein-based bio-nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article provides a broad overview on the natural polymer-based bio-nanocomposite properties, processing and application. Bio-nanocomposites prepared with natural biopolymers, such as starch and protein, can be formed using a melt intercalation or a solvent intercalation method. Incorporation of layered silicates into the biopolymer matrices results in improved mechanical properties, water vapor barrier properties, and thermal stability of the resulting bio-nanocomposites without sacrificing biodegradability due to their nanometer size dispersion. Consequently, even though natural polymer-based bio-nanocomposite is in its infancy, it has a huge potential in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Waste online (2007). https://doi.org/www.wasteonline.org.uk. Accessed 5 April 2007

  2. Marsh K, Bugusu B (2007) J Food Sci 72(3):39

    Google Scholar 

  3. ElAmin A (2006) News Headlines: Industry & markets 31/07/2006

  4. Kale G, Kijchavengkul T et al (2007) Macromol Biosci 7(3):255

    CAS  Google Scholar 

  5. Howell SG (1992) J Hazard Mater 29(2):143

    CAS  Google Scholar 

  6. Cao AM (2002) China Environmental Protection Industry 1:86

    Google Scholar 

  7. Aguado J, Serrano D (1999) Feedstock recycling of plastic wastes. Royal Society of Chemistry Publisher, pp 20–31

  8. Rhim JW, Ng PKW (2007) Crit Rev Food Sci Nutr 47(4):411

    CAS  Google Scholar 

  9. Monteavaro LL, da Silva EO et al (2005) J Am Oil Chem Soc 82(5):365

    CAS  Google Scholar 

  10. Mallapragada SK, Narasimhan B (2006) Handbook of biodegradable polymeric materials and applications, vol 1. American Scientific Publishers, pp 1–6, 154–197

  11. Ray SS, Bousmina M (2005) Prog Mater Sci 50(8):962

    CAS  Google Scholar 

  12. Sorrentino A, Gorrasi G et al (2007) Trends Food Sci Technol 18(2):84

    CAS  Google Scholar 

  13. Debeaufort F, Quezada-Gallo JA et al (1998) Crit Rev Food Sci Nutr (4):299

    Google Scholar 

  14. Chaudhary AL, Sopade PA, Torley PJ, Halley PJ (2007) Biomacromolecules (submitted)

  15. Kojima Y, Usuki A et al (1993) J Mater Res 8(5):1185

    CAS  Google Scholar 

  16. Lan T, Pinnavaia TJ (1994) Chem Mater 6(12):2216

    CAS  Google Scholar 

  17. LeBaron PC, Pinnavaia TJ (2001) Chem Mater 13(10):3760

    CAS  Google Scholar 

  18. Yano K, Usuki A et al (1997) J Polym Sci A Polym Chem 35(11):2289

    CAS  Google Scholar 

  19. Messersmith PB, Giannelis EP (1995) J Polym Sci A Polym Chem 33(7):1047

    CAS  Google Scholar 

  20. Hasegawa N, Kawasumi M et al (1998) J Appl Poly Sci 67(1):87

    CAS  Google Scholar 

  21. Alexandre M, Dubois P (2000) Mater Sci Eng R Rep 28(1–2):1

    Google Scholar 

  22. Carrado KA (2000) Appl Clay Sci 17(1–2):1

    CAS  Google Scholar 

  23. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15(1–2):11

    CAS  Google Scholar 

  24. McGlashan SA, Halley PJ (2003) Polym Int 52(11):1767

    CAS  Google Scholar 

  25. Berglund L (2005) In: Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, p 808

    Google Scholar 

  26. Kalambur S, Rizvi SSH (2005) J Appl Poly Sci 96(4):1072

    CAS  Google Scholar 

  27. Kalambur SB, Rizvi SS (2004) Polym Int 53(10):1413

    CAS  Google Scholar 

  28. Kalambur S, Rizvi SSH (2006) Polym Eng Sci 46(5):650

    CAS  Google Scholar 

  29. Shogren RL, Fanta GF et al (1993) Starch-Starke 45(8):276

    CAS  Google Scholar 

  30. Krochta JM, Baldwin EA et al (1994) Edible coatings and films to improve food quality. Technomic Publishing Company Inc., Lancaster, pp 213–258, 308–329

  31. Stepto RFT (2003) Macromol Symp 201(9):203

    CAS  Google Scholar 

  32. Ollett AL, Parker R et al (1991) J Mater Sci 26(5):1351. https://doi.org/10.1007/BF00544476

    CAS  Google Scholar 

  33. Slade L, Levine H (1993) Carbohydr Polym 21(2–3):105

    CAS  Google Scholar 

  34. Avella M, De Vlieger JJ et al (2005) Food Chem 93(3):467

    CAS  Google Scholar 

  35. Wilhelm HM, Sierakowski MR et al (2003) Polym Int 52(6):1035

    CAS  Google Scholar 

  36. Wilhelm HM, Sierakowski MR et al (2003) Carbohydr Polym 52(2):101

    CAS  Google Scholar 

  37. Park HM, Li X et al (2002) Macromol Mater Eng 287(8):553

    CAS  Google Scholar 

  38. Park HM, Lee WK et al (2003) J Mater Sci 38(5):909. https://doi.org/10.1023/A:1022308705231

    CAS  Google Scholar 

  39. Pandey JK, Kumar AP et al (2005) J Nanosci Nanotechnol 5(4):497

    CAS  Google Scholar 

  40. Pandey JP, Singh RP (2005) Starch/Starke 57(1):8

    CAS  Google Scholar 

  41. Huang M, Yu J (2006) J Appl Poly Sci 99:170

    CAS  Google Scholar 

  42. Chiou BS, Yee E et al (2006) Cereal Chem 83(2):300

    CAS  Google Scholar 

  43. Chiou BS, Yee E et al (2005) Carbohydr Polym 59(4):467

    CAS  Google Scholar 

  44. Qiao X, Jiang W et al (2005) Starch/Starke 57(12):581

    CAS  Google Scholar 

  45. Chen B, Evans JRG (2005) Carbohydr Polym 61(4):455

    CAS  Google Scholar 

  46. Bagdi K, Muller P et al (2006) Compos Interface 13(1):1

    CAS  Google Scholar 

  47. Dean K, Yu L et al (2007) J Appl Poly Sci 103(2):802

    CAS  Google Scholar 

  48. Dean K, Yu L et al (2007) Compos Sci Technol 67(3–4):413

    CAS  Google Scholar 

  49. Chen M, Chen B et al (2005) Nanotechnology 16(10):2334

    CAS  Google Scholar 

  50. Krochta JM (2002) In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Boca Raton, pp 1–41

    Google Scholar 

  51. Dean K, Yu L (2005) In: Smith R (ed) Biodegradable polymers for industrial application. CRC Press, Boca Raton, pp 289–309

    Google Scholar 

  52. Zheng JP, Li P et al (2002) J Appl Poly Sci 86(5):1189–1194

    CAS  Google Scholar 

  53. Arnall AH (2003) Canonbury villas. Greenpeace Environmental Trust, London

    Google Scholar 

  54. Ohshima K (2003) J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kaishi 50(1):35

    CAS  Google Scholar 

  55. Rhim JW, Hong SI et al (2006) J Agric Food Chem 54(16):5814

    CAS  Google Scholar 

  56. Huang Z, Chen H, Yip A (2003) J Nanoparticle Res 5(3–4):333

    CAS  Google Scholar 

  57. Sanguansri P, Augustin MA (2006) Trends Food Sci Technol 17(10):547

    CAS  Google Scholar 

  58. Giannelis EP (1996) Adv Mater 8(1):29

    CAS  Google Scholar 

  59. Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539

    CAS  Google Scholar 

  60. Lagaly G (1999) Appl Clay Sci 15(1–2):1

    CAS  Google Scholar 

  61. Manias E, Touny A et al (2001) Chem Mater 13:3516

    CAS  Google Scholar 

  62. Strawhecker KE, Manias E (2000) Chem Mater 12:2943

    CAS  Google Scholar 

  63. Weiss J, Takhistov P et al (2006) J Food Sci 71(9):107

    Google Scholar 

  64. Petersen K, Nielsen PV et al (1999) Trends Food Sci Technol 10:52

    CAS  Google Scholar 

  65. Krochta JM, Mulder-Johnston de C (1997) Food Technol 51:61

    Google Scholar 

  66. Leaversuch RD (1996) Mod Plast 73(1):95

    Google Scholar 

  67. Ma C (2006) Liaoning Chemical Industry 35(4):219

    Google Scholar 

  68. Tian YK (1999) Shanghai Chemical Industry 24(7):27

    Google Scholar 

  69. Bonora M, De Corte D (2003) Macromol Sym 197(7):443

    CAS  Google Scholar 

  70. Scarascia-Mugnozza G, Schettini E et al (2006) Polym Degrad Stab 91(11):2801

    CAS  Google Scholar 

  71. Shen ZQ, Simon GP et al (2002) Polymer 43(15):4251

    CAS  Google Scholar 

  72. Cho JW, Paul DR (2001) Polymer 42(3):1083

    CAS  Google Scholar 

  73. Fornes TD, Yoon PJ et al (2001) Polymer 42(25):09929

    CAS  Google Scholar 

  74. Schmidt D, Shah D et al (2002) Curr Opin Solid St Mater Sci 6(3):205

    CAS  Google Scholar 

  75. Pandey JK, Reddy KR et al (2005) Polym Degrad Stab 88(2):234

    CAS  Google Scholar 

  76. Dennis HR, Hunter DL et al (2001) Polymer 42(23):9513

    CAS  Google Scholar 

  77. Vaia RA, Giannelis EP (1997) Macromolecules 30(25):7990

    CAS  Google Scholar 

  78. Vaia RA, Giannelis EP (1997) Macromolecules 30(25):8000

    CAS  Google Scholar 

  79. Hong HQ, Jia DM et al (2006) Chinese J Mater Res 20(2):197

    CAS  Google Scholar 

  80. Wan CJ, Yu LY et al (2006) Trans Nonferr Metal Soc China 16(2):s508

    Google Scholar 

  81. Cai YB, Hu Y et al (2007) J Mater Sci 42(14):5524. https://doi.org/10.1007/s10853-006-1077-5

    CAS  Google Scholar 

  82. Ozdemir M, Floros JD (2004) Crit Rev Food Sci Nutr 44:185

    CAS  Google Scholar 

  83. Fowler PA, Hughes JM et al (2006) J Sci Food Agric 86(12):1781

    CAS  Google Scholar 

  84. Joue¨t JP (2001) Plasticulture 120(2):108

    Google Scholar 

  85. Jana T, Roy BC et al (2001) Eur Polym J 37(4):861

    CAS  Google Scholar 

  86. Wang YZ, Yang KK et al (2004) J Polym Environ 12(1):7

    Google Scholar 

  87. Yew SP, Tang HY et al (2006) Polym Degrad Stab 91(8):1800

    CAS  Google Scholar 

  88. Ruiz-Hickey ER, Darder M et al (2005) J Mater Chem 15(35–36):3650

    Google Scholar 

  89. Ray SS, Yamada K et al (2002) Nano Lett 2(10):1093

    CAS  Google Scholar 

  90. Ball S, Guan HP et al (1996) Cell 86(9):349

    CAS  Google Scholar 

  91. Oya A, Kurokawa Y et al (2000) J Mater Sci 35(5):1045. https://doi.org/10.1023/A:1004773222849

    CAS  Google Scholar 

  92. Buleon A, Colonna P et al (1998) Int J Biol Macromol 23:85

    CAS  Google Scholar 

  93. Poutanen K, Forssell P (1996) Trends Polym Sci 4(4):128

    CAS  Google Scholar 

  94. Colonna P, Buleon A et al (1982) Carbohydr Polym 2:43

    CAS  Google Scholar 

  95. Imbery A, Buleon A et al (1991) STARCH-STARKE 43(10):375

    Google Scholar 

  96. Colonna P, Buleon A et al (1981) J Food Sci 46:88

    CAS  Google Scholar 

  97. Okamoto M, Nam PH et al (2001) Nano Letters 1:295

    CAS  Google Scholar 

  98. Dufresne A, Cavaille JY (1998) J Polym Sci B Polym Phys 36(12):2211

    CAS  Google Scholar 

  99. Liao HT, Wu CS (2005) J Appl Poly Sci 97(1):397

    CAS  Google Scholar 

  100. Kvien I, Sugiyama J et al (2007) J Mater Sci 42(19):8163. https://doi.org/10.1007/s10853-007-1699-2

    CAS  Google Scholar 

  101. Averous L, Moro L et al (2000) Polymer 41(11):4157

    CAS  Google Scholar 

  102. Averous L, Fringant C et al (2001) Polymer 42(15):6565

    CAS  Google Scholar 

  103. Averous L, Boquillon N (2004) Carbohydr Polym 56(2):111

    CAS  Google Scholar 

  104. Huang MF, Yu JG et al (2004) Polymer 45(20):7017

    CAS  Google Scholar 

  105. Zhang W, Xu SY et al (2003) Food chemistry, 3rd edn. China Light Industry Press, Beijing, pp 267–302

    Google Scholar 

  106. Damodaran S (1994) Protein functionality in food system. Marcel Dekker, New York, pp 1–38

    Google Scholar 

  107. Phillips MC (1981) Food Technol (Chicago) 35:50

    CAS  Google Scholar 

  108. Miller KS, Krochta JM (1997) Trends Food Sci Technol 8:228

    CAS  Google Scholar 

  109. Cuq B, Gontard N et al (1998) Cereal Chem 75(1):1

    CAS  Google Scholar 

  110. Brandenburg AH, Weller CL et al (1993) J Food Sci 58(5):1086

    CAS  Google Scholar 

  111. Hernandez-Munoz P (2003) J Agric Food Chem 51:7647

    CAS  Google Scholar 

  112. Yu L, Dean K et al (2006) Prog Polym Sci 31(6):576

    CAS  Google Scholar 

  113. Tunc S, Angellier H et al (2007) J Membrane Sci 289(1–2):159

    CAS  Google Scholar 

  114. Dalgleish DG, Kinsella JE et al (1989) Food proteins. American Oil Chemists Society, Champagne, pp 155–178

    Google Scholar 

  115. Brunner JR, Whitaker JR et al (1977) Food proteins. AVI Publishers, Inc., Westport, pp 175–208

    Google Scholar 

  116. Graveland-Bikker JF, de Kruif CG (2006) Trends Food Sci Technol 17(5):196

    CAS  Google Scholar 

  117. Hedenqvist MS, Backman A et al (2006) Compos Sci Technol 66(13):2350

    CAS  Google Scholar 

  118. Snyder HE, Kwon TW (1987) Soybean utilization. Van Nostrand Reinhold Company, Inc., New York

    Google Scholar 

  119. Mounts TL, Wolf WJ et al (1987) In: Wilcox JR (ed) Soybean: improvement, production, and uses, 2nd edn. American Society of Agronomy, Inc., Madison, pp 820–866

    Google Scholar 

  120. Rhim JW, Lee JH et al (2005) Food Sci Biotechnol 14(1):112

    CAS  Google Scholar 

  121. Chen P, Zhang L (2006) Biomacromolecules 7(6):1700

    CAS  Google Scholar 

  122. Yu JH, Cui GJ et al (2007) J Appl Poly Sci 104(5):3367

    CAS  Google Scholar 

  123. Eastoe JE, Leach AA (1977) The science and technology of gelatin. Academic Press, Inc., New York, pp 73–107

    Google Scholar 

  124. Kim HW, Song JH et al (2005) Adv Funct Mater 15(12):1988

    CAS  Google Scholar 

  125. Li JJ, Chen YP et al (2007) Biomaterials 28(5):781

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Torley, P. & Halley, P.J. Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43, 3058–3071 (2008). https://doi.org/10.1007/s10853-007-2434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2434-8

Keywords

Navigation