Skip to main content
Log in

Coarsening of Co-rich precipitates in a Cu–Co–Fe ternary alloy

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of coherency on coarsening of fcc Co–Fe precipitates in a Cu–1.47 wt.%Co–0.56 wt.%Fe (Co : Fe = 7:3 in atomic ratio) alloy aged at 873–973 K has been studied by measuring both the precipitate size by transmission electron microscopy and the solute concentration in the Cu matrix by electrical resistivity measurements. The precipitate phase consists of 7 parts of Co and 3 parts of Fe in atomic ratio, irrespective of the precipitate size. The precipitates smaller than about 8 nm in radius are coherent with the Cu-matrix. When the average precipitate radius is over 18 nm, all the precipitates become semi-coherent. The coarsening rates are not affected by the coherency of the precipitates. The precipitate/matrix interface energy γ has been derived, independently of the diffusivities of solute atoms using a coarsening model developed by Kuehmann and Voorhees for ternary systems. The precipitates are coherent or semi-coherent with the matrix, the experimentally obtained value of γ is 0.2 J/m2. This value lies between the reported values of γ  = 0.15 J/m2 for Co precipitates and γ = 0.25 J/m2 for γ-Fe precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  2. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  3. Bhattacharyya SK, Russell KC (1972) Metall Trans 3:2195

    Article  CAS  Google Scholar 

  4. Bhattacharyya SK, Russell KC (1976) Metall Trans A 7:453

    Article  Google Scholar 

  5. Lee HM, Allen SM, Grujicic M (1991) Metall Trans A 22:2863

    Article  Google Scholar 

  6. Kuehmann CJ, Voorhees PW (1996) Metall Mater Trans A 27:937

    Article  Google Scholar 

  7. Marquis EA, Seidman DN (2005) Acta Mater 53:4259

    Article  CAS  Google Scholar 

  8. Fuller CB, Seidman DN (2005) Acta Mater 53:5415

    Article  CAS  Google Scholar 

  9. Watanabe C, Watanabe D, Monzen R (2006) Mater Trans 47:2285

    Article  CAS  Google Scholar 

  10. Sudbrack CK, Yoon KE, Noebe RD, Seidman DN (2006) Acta Mater 54:3199

    Article  CAS  Google Scholar 

  11. Watanabe D, Watanabe C, Monzen R (2007) Mater Trans 48:1571

    Article  CAS  Google Scholar 

  12. Watanabe D, Higashi K, Watanabe C, Monzen R (2006) J Japan Inst Metals 71:151

    Article  Google Scholar 

  13. Monzen R, Kita K (2002) Philos Mag Lett 82:373

    Article  CAS  Google Scholar 

  14. Japan Institute of Metals (2004) Kinzoku data book. Maruzen, Tokyo, p 37

  15. Heinrich B, Cocharan JF, Kowalewski M, Kirshner J, Celinski Z, Arrott AS, Myrtle K (1991) Phys Rev B 44:9348

    Article  CAS  Google Scholar 

  16. Kato M, Monzen R, Mori T (1978) Acta Metall 26:605

    Article  CAS  Google Scholar 

  17. Monzen R, Kato M (1992) J Mater Sci Lett 11:56

    Article  CAS  Google Scholar 

  18. Lin M, Olson GB, Cohen M (1993) Acta Metall Mater 41:253

    Article  CAS  Google Scholar 

  19. Fujii T, Kato T, Yamada T, Kato M, Nimori S, Ohtsuka H (2003) Mater Trans 44:2545

    Article  CAS  Google Scholar 

  20. Ashby MF, Brown LM (1963) Philos Mag 8:1083

    Article  Google Scholar 

  21. Ashby MF, Brown LM (1963) Philos Mag 8:1649

    Article  CAS  Google Scholar 

  22. Iwamura S, Miura Y (2004) Acta Mater 52:591

    Article  CAS  Google Scholar 

  23. Fujii T, Tamura T, Kato M, Onaka S (2002) Microsc Microanal 8:1434

    Article  Google Scholar 

  24. Satoh S, Johnson WC (1992) Metall Trans A 23:2761

    Article  Google Scholar 

  25. Onaka S, Kobayashi N, Fujii T, Kato M (2003) Mater Sci Eng A 347:42

    Article  Google Scholar 

  26. Onaka S, Fujii T, Kato M (2005) Mech Mater 37:179

    Article  Google Scholar 

  27. Ohnuma I, Enoki H, Ikeda O, Kainuma R, Ohtani H, Sundman B, Ishida K (2002) Acta Mater 50:379

    Article  CAS  Google Scholar 

  28. Linde JO (1968) Helv Phys Acta 41:1007

    CAS  Google Scholar 

  29. Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K (2002) J Phase Equilib 23:236

    Article  CAS  Google Scholar 

  30. Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171

    Article  CAS  Google Scholar 

  31. Turchanin MA, Agraval PG, Nikolaenko IV (2003) J Phase Equilib 24:307

    Article  CAS  Google Scholar 

  32. Turnbull D (1955) Impurities and interfaces. ASM, Metals Park, p 121

  33. Jesser WA (1969) Phil Mag 19:993

    Article  Google Scholar 

  34. Watanabe D, Watanabe C, Monzen R (2007) J Mater Sci. doi:https://doi.org/10.1007/s10853-007-2373-4

    Article  CAS  Google Scholar 

  35. Dohl R, Macht M-P, Naundorf V (1984) Phys Stat Sol (a) 86:603

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Inoue Foundation for Science. The authors thank Professor K. Tazaki, Kanazawa University, for use of the JEOL 2000EX and 2010FEF. We also acknowledge Mr. K. Higashimine of the Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, for the TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, C., Watanabe, D. & Monzen, R. Coarsening of Co-rich precipitates in a Cu–Co–Fe ternary alloy. J Mater Sci 43, 3817–3824 (2008). https://doi.org/10.1007/s10853-007-2290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2290-6

Keywords

Navigation