Skip to main content
Log in

Adsorption of phenylalanine on layered double hydroxides: effect of temperature and ionic strength

Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work we report the adsorption of phenylalanine (Phe) on Magnesium Aluminum Layered Double Hydroxides (Mg–Al–CO3-LDH) at two different temperatures (298 and 310 K) and under two distinct ionic strength conditions (with and without the addition 0.1 M of NaCl). The adsorption isotherms exhibit the same profile in all conditions, and they only differ in the amount of removed Phe. At lower ionic strength, the isotherms are almost identical at both temperatures, except for the last points, where the increase in temperature causes a decrease in the amount of adsorbed Phe. An increase in ionic strength results in a decrease in Phe adsorption. The electrokinetic potential decreases as the amount of adsorbed Phe increases, and only positive values are observed. This indicates that the surface of the adsorbent is not totally neutralized and suggests that more Phe could be removed by adsorption. The presence of Phe on the solid is confirmed by FTIR spectra, which present the specific bands assigned to Phe. The hydrophobicity of the amino acid probably contributes to its extraction, thus enabling the removal of a great amount of Phe. In conclusion, LDH is potentially applicable in the removal of Phe from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rogers PJ, Keedwell P, Blundell JE (1991) Physiol & Behav 49:739

    Article  CAS  Google Scholar 

  2. Cloninge MR, Baldwin RE (1974) J Food Sci 39:347

    Article  Google Scholar 

  3. Shih IL, Van YT (2001) Bioresour Technol 79:207

    Article  CAS  Google Scholar 

  4. Parimi PS, Devapatla S, Gruca LL, Amini SB, Hanson RW, Kalhan SC (2004) Am J Clin Nutr 79:402

    CAS  Google Scholar 

  5. Xie Y, Van de Sandt E, de Weerd T, Wang NHL (2001) J Chromatogr A 908:273

    Article  CAS  Google Scholar 

  6. Grzegorczyk DS, Carta G (1996) Chem Eng Sci 51:807

    Article  CAS  Google Scholar 

  7. Kubota LT, Gambero A, Santos AS, Granjeiro JM (1996) J Colloid Interface Sci 183:453

    Article  CAS  Google Scholar 

  8. Melis S, Markos J, Cao G, Morbidelli M (1996) Ind Eng Chem Res 35:1912

    Article  CAS  Google Scholar 

  9. Dutta M, Baruah R, Dutta NN (1997) Sep Purif Technol 12:99

    Google Scholar 

  10. Diez S, Leitao A, Ferreira L, Rodrigues A (1998) Sep Purif Technol 13:25

    Google Scholar 

  11. Moitra S, Mundhara GL, Tiwari JS (1989) Colloids Surf 41:311

    Article  CAS  Google Scholar 

  12. Vaccari A (1998) Catal Today 41:53

    Article  CAS  Google Scholar 

  13. Takehira K, Kawabata T, Shishido S, Murakami K, Ohi T, Shoro D, Honda M, Takaki K (2005) J Catal 231:92

    Article  CAS  Google Scholar 

  14. Aisawa S, Kudo H, Hoshi T, Takahashi S, Hirahara H, Umetsu Y, Narita E (2004) J Sol Stat Chem 177:3987

    Article  CAS  Google Scholar 

  15. Pavan PC, Crepaldi EL, Gomes GD, Valim JB (1999) Coll Surf A-Physicochem 154:399

    Article  CAS  Google Scholar 

  16. dos Reis MJ, Silverio F, Tronto J, Valim JB (2004) J Phys Chem Solids 65:487

    Article  CAS  Google Scholar 

  17. Pavan PC, Gomes GD, Valim JB (1998) Microporous Mesoporous Mat 21:659

    Article  CAS  Google Scholar 

  18. Pavan PC, Crepaldi EL, Valim JB (2000) J Coll Int Sci 229:346

    Article  CAS  Google Scholar 

  19. Pavan PC, Cardoso LP, Crepaldi EL, Valim JB (2000) Stud Surf Sci Catal 129:443

    Article  CAS  Google Scholar 

  20. Anbarasan R, Lee WD, Im SS (2005) Bull Mater Sci 28:145

    Article  CAS  Google Scholar 

  21. Zhu MX, Li YP, Xie M, Xin HZ (2005) J Hazard Mater 120:163

    Article  CAS  Google Scholar 

  22. Klumpp E, Contreras-Ortega C, Klahre P, Tino FJ, Yapar S, Portillo C, Stegen S, Queirolo F, Schwuger MJ (2003) Coll Surf A-Physicochem 230:111

    Article  CAS  Google Scholar 

  23. Leroux F, Aranda P, Besse JP, Ruiz-Hitzky E (2003) Eur J Inorg Chem 6:1242

    Article  Google Scholar 

  24. Tronto J, dos Reis MJ, Silverio F, Balbo VR, Marchetti JM, Valim JB (2004) J Phys Chem Solids 65:475

    Article  CAS  Google Scholar 

  25. Crepaldi EL, Valim JB (1998) Quim Nova 21:300

    CAS  Google Scholar 

  26. de Roy A, Forano C, Besse JP (1991) In: Abstracts of papers of the American Chemical Society 202, 127-ETR

  27. Reichle WT (1986) Chemtech 16:58

    CAS  Google Scholar 

  28. Reichle WT, Kang SY, Everhardt DS (1986) J Catal 101l:352

    Article  Google Scholar 

  29. Moore S, Stein WH (1954) J Biol Chem 22:907

    Google Scholar 

  30. Bitting D, Harwell JH (1987) Langmuir 3:500

    Article  CAS  Google Scholar 

  31. Somasundaran P, Fuerstenau DW (1972) Trans Soc Min Eng AIME 252:275

    CAS  Google Scholar 

  32. Fridriksberg DA, Tikihomolova KP, Sidorova MP (1979) Croat Chem Acta 52:125

    Google Scholar 

  33. Titus E, Kalkar AK, Gaikar VG (2003) Colloids Surf A 223:55

    Article  CAS  Google Scholar 

  34. Grzegorczyk DS, Carta G (1996) Chem Eng Sci 51:819

    Article  CAS  Google Scholar 

  35. Lee K, Hong J (1995) React Funct Polym 28:75

    Article  CAS  Google Scholar 

  36. Fudala A, Palinko I, Kiricsi I (1999) J Mol Struct 483:33

    Article  Google Scholar 

  37. Aisawa S, Hirahara H, Uchiyama H, Takahashi S, Narita E (2002) J Solid State Chem 167:152

    Article  CAS  Google Scholar 

  38. Whilton NT, Vickers PJ, Mann S (1997) J Mater Chem 7:1623

    Article  CAS  Google Scholar 

  39. West AR (1987) In: Solide state chemistry and its applications. Jonh Wiley & Sons, New York, p 173

    Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, and Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Silvério.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvério, F., dos Reis, M.J., Tronto, J. et al. Adsorption of phenylalanine on layered double hydroxides: effect of temperature and ionic strength. J Mater Sci 43, 434–439 (2008). https://doi.org/10.1007/s10853-007-2202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2202-9

Keywords

Navigation