Skip to main content
Log in

Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work we describe the synthesis, micro structure (XRD, SEM, AFM) of magnesium oxide nanoparticles and magnesium oxide thin films synthesized by urea-based combustion method and solution growth route using magnesium nitrate as the source of Mg. We used fuel-to-oxidizer ratio (Ψ) as a control parameter to investigate how lattice parameter, particle size, and micro strain vary with Ψ = 0.25–2 in the steps of 0.25. Earlier we have studied NiO as a substitutional solute in MgO (Rao KV, Sunandana (2005) Solid State Phys 50:235). The average crystalline size of MgO was estimated from the full width half maximum (Gaussian and lorentzian fits) of the X-ray diffraction peaks using Sherrer’s formula and Williamson–Hall plot. The particle size varies from 15(±0.3) nm to 60(±1.2) nm as Ψ is varied systematically. Surface areas of the MgO powders measured using BET method were used to calculate the particle size, which is comparable with the crystalline size calculated from XRD. We also calculated porosity and microstrain in the MgO nanoparticles with varying Ψ. Thin films of MgO are well characterized from XRD and AFM. The size of the particles and RMS roughness of the thin films were calculated using AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao KV, Sunandana CS (2005) Solid State Phys (India) 50:235

    Google Scholar 

  2. Park J-Y, Lee Y-J, Jun K-W, Aeg J-O, Yim D-J (2006) J Ind Eng Chem 12(6):882

    CAS  Google Scholar 

  3. Durusory HZ (1991) J Mater Sci Lett 10:1023

    Article  Google Scholar 

  4. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) J Phys Chem B103:3225

    Google Scholar 

  5. Poullikkas A (2004) Energy Convers Manage 45:1725

    Article  Google Scholar 

  6. Guo XL, Chen ZG, Zhu SN, Xiong SB, Hu WS, Lin CY (1996) J Appl Phys 29:1632

    CAS  Google Scholar 

  7. Li YR, Liang Z, Zhang Y, Zhu J, Jiang SW, Wei XH (2005) Thin Solid films 489:245

    Article  CAS  Google Scholar 

  8. Brien JC (1982) J Inst Energy 15:115

    Google Scholar 

  9. Itatani K, Yasuda R, Howell FS, Kishioka A (1997) J Mater Sci 32:2977, doi:10.1023/A:1018649222749

  10. Boeaf JP (2003) J Phys D Appl Phys 36:R53

    Article  Google Scholar 

  11. Byrum BW Jr (1975) IEEE Trans Electron Devices ED-22(9):685

    Google Scholar 

  12. Phillipsa Julia MA (1996) Appl Phys 79:1829

    Article  Google Scholar 

  13. Pan C, O’Keefe P, Kester JJ (1998) SID98 Digest 29:865

  14. Ishiguro T, Hiroshima Y, Inoue T (1996) Jpn J Appl Phys Pt 1 35(6):3537

    Article  CAS  Google Scholar 

  15. Ishihra T, Motyamam M (1986) J Ceram Soc Jpn 97:771

    Google Scholar 

  16. Fujii E, Tomzawa A, Fujii S, Torii H, Takayama R, Hiro T (1994) Jpn J Appl Phys Pt 1 33(11):6331

    Article  CAS  Google Scholar 

  17. Biljana P, Tanja K, Metodija N, Ivan G (2000) Appl Surf Sci 165:271

    Article  Google Scholar 

  18. Siegel RW (1993) Mater Sci Eng A 168:189

    Article  Google Scholar 

  19. Mimani T, Patil KC (2001) Mater Phys Mech 4:134

    CAS  Google Scholar 

  20. Arul Dhas N, Patil KC (1992) Int J Selfpropag High Temp Synth 1:576

    Google Scholar 

  21. Kingsley JJ, Patil KC (1988) Mater Lett 6:427

    Article  CAS  Google Scholar 

  22. Morris VN, Farrell RA, Sexton AM, Morris MA (2006) J Phys Conf Ser 26:119

    Article  Google Scholar 

  23. Ragone DV (1995) Thermodynamics of materials, chapter 4, vol II. John Wiley & Sons Inc

  24. Wilson ACJ (1962) X-ray optics, 2nd edn. Lone, Methune

    Google Scholar 

  25. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesely Publishing Company, Inc., Philippines

    Google Scholar 

  26. Kameli P, Salamati H, Aezami A (2006) J Appl Phys 100:053914

    Article  Google Scholar 

  27. Rao KV, Sunandana CS (2007) Advanced nano materials 2007 international conference. IITBOMBAY, India, p 112

    Google Scholar 

  28. Brumauer S, Emmeteof PH, Teller E (1938) J Am Chem Soc 60:309

    Article  Google Scholar 

  29. Robert CW, Melvin JA, Willian HB (1986) The CRC hand book of chemistry and physics, 66th edn. CRC press, Boca Raton, FL

    Google Scholar 

  30. Bhaduri SB, Bhaduri S (1999) Non equilibrium processing of materials. Amsterdam Publication, p 289

Download references

Acknowledgments

K. V. Rao thanks the JNT University and Department of Physics, JNTU College of Engineering, Hyderabad for encouragement. We thank Dr .K. V. R. Chari, IICT Hyderabad for help in BET surface area measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Sunandana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.V., Sunandana, C.S. Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J Mater Sci 43, 146–154 (2008). https://doi.org/10.1007/s10853-007-2131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2131-7

Keywords

Navigation