Skip to main content
Log in

Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation was conducted to determine the role of Pt in a thermal barrier coating system deposited on a nickel-base superalloy. Three coating systems were included in the study using a layer of yttria-stabilized zirconia as a model top coat, and simple aluminide, Pt-aluminide, and Pt bond coats. Thermal exposure tests at 1,150 °C with a 24-h cycling period to room temperature were used to compare the coating performance. Additional exposure tests at 1,000, 1,050, and 1,100 °C were conducted to study the kinetics of interdiffusion. Microstructural features were characterized by scanning electron microscopy and transmission electron microscopy combined with energy dispersive X-ray spectroscopy as well as X-ray diffraction. Wavelength dispersive spectroscopy was also used to qualitatively distinguish among various refractory transition metals. Particular emphasis was placed upon: (i) thermal stability of the bond coats, (ii) thickening rate of the thermally grown oxide, and (iii) failure mechanism of the coating. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Among the bond coats included in the study, a surface layer of Pt-rich γ′-phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and β-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pomeroy MJ (2005) Mater Des 26(3):223

    Article  CAS  Google Scholar 

  2. Padture NP, Gell M, Jordan EH (2002) Science 296(5566):280

    Article  CAS  Google Scholar 

  3. DeMasi-Marcin JT, Gupta DK (1994) Surf Coat Technol 68/69:1

    Article  CAS  Google Scholar 

  4. Sims CT (1991) Adv Mater Processes 139(6):32

    CAS  Google Scholar 

  5. Tolpygo V, Clark DR (2005) Surf Coat Technol 200(5–6):1276

    Article  CAS  Google Scholar 

  6. Tawancy HM, Mohamed AI, Abbas NM, Jones RE, Rickerby DS (2003) J Mater Sci 38:3797

    Article  CAS  Google Scholar 

  7. Guerre C, Remy L, Molins R (2003) Mater High Temp 20(4):481

    Article  CAS  Google Scholar 

  8. Yanar NM, Kim G, Hamano S, Pettit FS, Meier GH (2003) Mater High Temp 20(4):495

    Article  CAS  Google Scholar 

  9. Mumm DR, Evans AG, Spitsberg IT (2001) Acta Mater 49(12):2329

    Article  CAS  Google Scholar 

  10. Tawancy HM, Sridhar N, Abbas NM, Rickerby DS (2000) J Mater Sci 35:3615

    Article  CAS  Google Scholar 

  11. Gell M, Vaidyanathan K, Barber B, Cheng J, Jordan E (1999) Metall Mater Trans A Phys Metall Mater Sci 30(2):427

    Article  Google Scholar 

  12. Tawancy HM, Sridhar N, Abbas NM, Rickerby DS (1998) J Mater Sci 33:681

    Article  CAS  Google Scholar 

  13. Dietl U (1994) Surf Coat Technol 68/69:17

    Article  Google Scholar 

  14. Sun JH, Chang E, Chao CH, Cheng M (1993) Oxid Met 40(5/6):465

    Article  CAS  Google Scholar 

  15. Meier SM, Nissley DM, Sheffler KD, Cruse TA (1992) Trans ASME 114:258

    CAS  Google Scholar 

  16. Lih W, Chang E, Wu BC, Chao CH (1991) Oxid Met 36(3/4):221

    CAS  Google Scholar 

  17. Millerc RM (1989) J Eng Gas Turbines Power 111:301

    Article  Google Scholar 

  18. Panat R, Hsia KJ, Oldham J (2005) Phil Mag 85(1):45

    Article  CAS  Google Scholar 

  19. Panat R, Hsia KJ (2004) Proc Royal Soc of London Series A Math Phys Eng Sci 460(2047):1957

    Article  CAS  Google Scholar 

  20. Tolpygo VK, Clarke DR (2004) Acta Mater 52(17):5115

    CAS  Google Scholar 

  21. Panat R, Hsia KJ, Cahill DG (2005) J Appl Phys 97(1):art. no. 013521

  22. Pint BA (2004) Surf Coat Technol 188:71

    Article  Google Scholar 

  23. Tawancy HM, Abbas NM, Rhys-Jones TN (1991) Surf Coat Technol 49:1

    Article  CAS  Google Scholar 

  24. Schaeffer J, White WE, Vandervoort GF (1989) In: Lang E (ed) The role of active elements in the oxidation behavior of metals and alloys. Elsevier Applied Sciences, London, New York, p 231

    Google Scholar 

  25. Jackson MR, Rairden JR (1977) Metall Trans A8:1697

    Article  Google Scholar 

  26. Patnaik PC (1989) Mater Manuf Processes 4(1):133

    Article  Google Scholar 

  27. Goward GW, Cannon LW (1988) Trans ASME 110(1):150

    CAS  Google Scholar 

  28. Smith JS, Boone DH (1990) Gas turbine and aeroengine congress and exposition, Brussels, Belgium, June 1990, ASME Paper Ni. 90-GT-319

  29. Goodhew PJ (1984) Specimen preparation for transmission electron microscopy. Oxford University Press, Oxford, p 26

    Google Scholar 

  30. Goward GW, Boone DH (1971) Oxid Met 3(5):475

    Article  CAS  Google Scholar 

  31. Goward GW (1970) J Met 22(10):31

    CAS  Google Scholar 

  32. Wood JH, Goldman EH (1987) In Sims CT, Stoloff NS, Hagel WC (eds) Superalloys II. Wiley Interscience, p 359

  33. Giggins CS, Pettit FS (1971) J Electrochem Soc 118:1782

    Article  CAS  Google Scholar 

  34. Fleetwood MJ (1970) J Inst Met 98:1

    CAS  Google Scholar 

  35. Hayashi S, Ford SI, Young DJ, Sordelet DJ, Besser MF, Gleeson B (2005) Acta Mater 53(11):3319

    Article  CAS  Google Scholar 

  36. Levy M, Farrell P, Petit FS (1986) Corrosion 42(12):717

    Article  Google Scholar 

  37. Anton DL, Shah DM, Duhl DN, Giamei FA (1989) J Met 41(9):12

    CAS  Google Scholar 

  38. Lih W, Chang E, Wu BC, Chao CH (1991) Oxid Met 36(3/4):221

    CAS  Google Scholar 

  39. Wu BC, Chao CH, Chang E (1990) Mater Sci Eng A124:215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M., UI-Hamid, A., Abbas, N.M. et al. Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems. J Mater Sci 43, 2978–2989 (2008). https://doi.org/10.1007/s10853-007-2130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2130-8

Keywords

Navigation