Skip to main content

Advertisement

Log in

Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA

Journal of Materials Science Aims and scope Submit manuscript

Abstract

In bone tissue engineering, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide the tissue regeneration in three-dimension. Calcium phosphate (CaP) ceramics are widely used for bone substitution and repair due to their biocompatibility, bioactivity, and osteoconduction. However, compared to alumina ceramics, either in the dense or porous form, the mechanical strength achieved for calcium phosphates is generally lower. In the present work, the major goal was to develop a tri-dimensional macroporous alumina scaffold with a biocompatible PVA/calcium phosphate coating to be potentially used as bone tissue substitute. This approach aims to combine the high mechanical strength of the alumina scaffold with the biocompatibility of calcium phosphate based materials. Hence, the porous alumina scaffolds were produced by the polymer foam replication procedure. Then, these scaffolds were submitted to two different coating methods: the biomimetic and the immersion in a calcium phosphate/polyvinyl alcohol (CaP/PVA) slurry. The microstructure, morphology and crystallinity of the macroporous alumina scaffolds samples and coated with CaP/PVA were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM/EDX) analysis. Also, specific surface area was assessed by BET nitrogen adsorption method and mechanical behavior was evaluated by axial compression tests. Finally, biocompatibility and cytotoxicity were evaluated by VERO cell spreading and attachment assays under SEM. The morphological analysis obtained from SEM photomicrograph results has indicated that 3D macroporous alumina scaffolds were successfully produced, with estimated porosity of over 65% in a highly interconnected network. In addition, the mechanical test results have indicated that porous alumina scaffolds with ultimate compressive strength of over 3.0 MPa were produced. Concerning to the calcium phosphate coatings, the results have showed that the biomimetic method was not efficient on producing a detectable layer onto the alumina scaffolds. On the other hand, a uniform and adherent inorganic–organic coating was effectively formed onto alumina macroporous scaffold by the immersion of the porous structure into the CaP/PVA suspension. Viable VERO cells were verified onto the surface of alumina porous scaffold samples coated with PVA–calcium phosphate. In conclusion, a new method was developed to produce alumina with tri-dimensional porous structure and uniformly covered with a biocompatible coating of calcium phosphate/PVA. Such system has high potential to be used in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Kim HM (2003) Curr Opin Solid State Mater Sci 7:289

    Article  CAS  Google Scholar 

  2. Nissan BB (2003) Curr Opin Solid State Sci 7:283

    Article  CAS  Google Scholar 

  3. Burg KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347

    Article  CAS  Google Scholar 

  4. Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474

    Article  CAS  Google Scholar 

  5. Pereira MM, Jones JR, Hench LL (2005) Adv Appl Ceram 104:35

    Article  CAS  Google Scholar 

  6. Sá MCC, Moraes B, Elias CN, Filho JD, Oliveira LG (2004) Mater Res 7:643

    Google Scholar 

  7. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AB (2006) Biomaterials 27:3413

    Article  CAS  Google Scholar 

  8. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Trends Biotechnol 22:643

    Article  CAS  Google Scholar 

  9. Jun YK, Kim WH, Kweon OK, Hong SH (2003) Biomaterials 24:3731

    Article  CAS  Google Scholar 

  10. Shi D, Jiang G (1998) Mater Sci Eng C 6:175

    Article  Google Scholar 

  11. Grandjean-Laquerriere A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Phillips TM (2006) Biomaterials 27:3195

    Article  CAS  Google Scholar 

  12. Han KR, Lim CS, Hong MJ, Jang JW, Hong KS (2000) J Am Ceram Soc 83:750

    Article  CAS  Google Scholar 

  13. Ramesh S, Sominska E, Cina B, Chaim R, Gedanken A (2000) J Am Ceram Soc 83:89

    CAS  Google Scholar 

  14. Oliveira M (2004) Synthesis and characterization of bioceramics based in calcium phosphate. MSC Dissertation, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil, 118 p

  15. Santos MH, Oliveira M, Souza LPF, Mansur HS, Vasconcelos wl (2004) Mater Res 7:625

    CAS  Google Scholar 

  16. Santhiya D, Subramanian S, Natarajan KA, Malghan SG (1999) J Colloid Interf Sci 216:143

    Article  CAS  Google Scholar 

  17. Santos PS, Santos HS, Toledo SP (2000) Mater Res 3:104

    CAS  Google Scholar 

  18. Tsetsekov A, Agrafiotis C, Milias J (2001) J Euro Ceram Soc 21:363

    Article  Google Scholar 

  19. Kasprzyk-Hordern B (2004) Adv Colloid Interf Sci 110:19

    Article  CAS  Google Scholar 

  20. Zhang J, Jiang D, Lin Q (2005) J Am Ceram Soc 88:1054

    Article  CAS  Google Scholar 

  21. Palmqvist L, Lyckfeldt O, Carlström E, Davoust P, Kauppi A, Holmberg GK (2006) Colloids Surface A Physicochem Eng Aspect 274:100

    Article  CAS  Google Scholar 

  22. Khan AU, Briscoe J, Luckham PF (200) Colloids Surfaces A Physicochem Eng Aspect 161:43

    Google Scholar 

  23. Khan AU, Briscoe BJ, Luckham PF (2000) Colloids Surfaces A Physicochem Eng Aspect 161:243

    Article  CAS  Google Scholar 

  24. Yokosawa MM, Pandolfelli VC, Frollini E (2002) J Dispersion Sci Technol 23:827

    Article  CAS  Google Scholar 

  25. Ishiduki K, Esumi K (1997) J Colloid Interf Sci 185:274

    Article  CAS  Google Scholar 

  26. Bowen P, Carry C, Luxembourg D, Hofmann H (2005) Powder Technol 157:100

    Article  CAS  Google Scholar 

  27. Kwon SH, Jun YK, Hong SH, Lee IS, Kim HE, Kwon SH (2002) J Am Ceram Soc 85:3129

    Article  CAS  Google Scholar 

  28. Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Biomaterials 16:113

    Google Scholar 

  29. Ramay HR, Zhang M (2003) Biomaterials 24:3293

    Article  CAS  Google Scholar 

  30. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW (2000) Biomaterials 21:1291

    Article  CAS  Google Scholar 

  31. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) J Am Ceram Soc 89:1771

    Article  CAS  Google Scholar 

  32. Currey J (1984) J Integrat Comp Biol 24:5

    Article  Google Scholar 

  33. Anderson MJ, Keyak JH, Skinner HB (1992) J Bone Joint Surg Am 74:747

    CAS  Google Scholar 

  34. Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F (1997) J Bone Joint Surg 79-b:995

    Article  Google Scholar 

  35. Rambo CR, Müller FA, Müller L, Sieber H, Hofmann I, Greil P (2006) Mater Sci Eng C 26:92

    Article  CAS  Google Scholar 

  36. Song MG, Lee J, Lee Y, Koo J (2006) J Colloid Interf Sci 300:603

    CAS  Google Scholar 

  37. Li P, Ohtsuki C, Kokubo T, Nakanish K, Soga N, Nakamura T, Yamamuro T (1992) J Am Ceram Soc 75:2094

    Article  CAS  Google Scholar 

  38. Li P, Groot K (1993) J Biomed Mater Res 27:1495

    Article  CAS  Google Scholar 

  39. Pereira MM, Hench LL (1996) J Sol-Gel Sci Technol 7:59

    Article  CAS  Google Scholar 

  40. Krukowski M, Shively RA, Osbody P, Eppley BL (1990) J Oral Maxillofacial Surg 48:468

    Article  CAS  Google Scholar 

  41. Banks E, Nakajima S, Shapiro LC, Tilevitz O, Alonzo JR, Chianelli C (1977) Science 198:1164

    Article  CAS  Google Scholar 

  42. Li P, Zhang F (1990) J Non-Cryst Solids 119:112

    Article  CAS  Google Scholar 

  43. Li P, Ohtsuki C, Kokubo T, Nakanish K, Soga N, Groot K (1994) J Biomed Mater Res 28:7

    Article  CAS  Google Scholar 

  44. Mansur HS, Oréfice RL, Mansur AAP (2004) Polymer 45:7193

    Article  CAS  Google Scholar 

  45. Liu J, Jean J, Li C (2006) J Am Ceram Soc 89:882

    Article  CAS  Google Scholar 

  46. Dunn GA, Zicha D (1995) J Cell Sci 108:1239

    CAS  Google Scholar 

  47. Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A (2002) J Mater Sci Mater Med 13:23

    Article  CAS  Google Scholar 

  48. Hannah S, Samuel SI (2005) Biomaterials 26:5492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPq/FAPEMIG/CAPES for financial support on this project. We are also grateful to Prof Dr Wander L. Vasconcelos for the FTIR spectroscopy facilities and to Prof Dr Dagoberto B. Santos for the SEM Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman S. Mansur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, H.S., Mansur, A.A.P., Barbosa-Stancioli, E.F. et al. Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. J Mater Sci 43, 510–524 (2008). https://doi.org/10.1007/s10853-007-1849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1849-6

Keywords

Navigation