Skip to main content
Log in

A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper a generalized anisotropic hyperelastic constitutive model for fiber-reinforced materials is proposed. Collagen fiber alignment in biological tissues is taken into account by means of structural tensors, where orthotropic and transversely isotropic material symmetries appear as special cases. The model is capable to describe the anisotropic stress response of soft tissues at large strains and is applied for example to different types of arteries. The proposed strain energy function is polyconvex and coercive. This guarantees the existence of a global minimizer of the total elastic energy, which is important in the context of a boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Humphrey JD (2002) Cardiovascular Solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  2. Fung YC (1993) Biomechanics mechanical properties of living tissues, 2nd ed. Springer, New York

    Google Scholar 

  3. Sacks MS (2000) J Elasticity 61:199

    Article  Google Scholar 

  4. Holzapfel GA, Gasser TC, Ogden RW (2000) J Elasticity 61:1

    Article  Google Scholar 

  5. Schmid H, Nash MP, Young AA, Hunter PJ (2006) ASME J Biomech Eng 128:742

    Article  CAS  Google Scholar 

  6. Arruda EM, Boyce MC (1993) J Mech Phys Solids 41:389

    Article  CAS  Google Scholar 

  7. Bischoff JE, Arruda EA, Grosh K (2002) J Appl Mech 69:570

    Article  CAS  Google Scholar 

  8. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Mech Phys Solids 53:1552

    Article  CAS  Google Scholar 

  9. Lanir Y (1978) Biophys J 24:541

    CAS  Google Scholar 

  10. Kastelic J, Palley I, Baer E (1980) J Biomech 13:887

    Article  CAS  Google Scholar 

  11. Freed AD, Doehring TC (2005) ASME J Biomech Eng 127:587

    Article  Google Scholar 

  12. Gasser TC, Ogden RW, Holzapfel GA (2006) J R Soc Interface 3:15

    Article  Google Scholar 

  13. Holzapfel GA, Gasser TC, Ogden RW (2004) ASME J Biomech Eng 126:264

    Article  Google Scholar 

  14. Merodio J, Ogden RW (2002) Arch Mech 54:525

    Google Scholar 

  15. Merodio J, Ogden RW (2003) Int J Solids Struct 40:4707

    Article  Google Scholar 

  16. Wilber JP, Walton JR (2002) Math Mech Solids 7:217

    Article  Google Scholar 

  17. Chuong CJ, Fung YC (1983) ASME J Biomech Eng 105:268

    CAS  Google Scholar 

  18. Ball JM (1977) Arch Rat Mech Anal 63:337

    Article  Google Scholar 

  19. Schröder J, Neff P (2003) Int J Solids Struct 40:401

    Article  Google Scholar 

  20. Ball JM (2002) Geometry, mechanics, and dynamics. Springer, New York, p 3

    Book  Google Scholar 

  21. Steigmann DJ (2003) Math Mech Solids 8:497

    Article  Google Scholar 

  22. Itskov M, Aksel N (2004) Int J Solids Struct 41:3833

    Article  Google Scholar 

  23. Itskov M, Ehret AE, Mavrilas D (2006) Biomech Model Mechanobiol 5:17

    Article  CAS  Google Scholar 

  24. Balzani D, Neff P, Schröder J, Holzapfel GA (2006) Int J Solids Struct 43:6052

    Article  Google Scholar 

  25. Itskov M (2007) Tensor algebra and tensor analysis for engineers with application to continuum mechanics. Springer, Berlin

  26. Itskov M (2002) ZAMM 82:535

    Article  Google Scholar 

  27. Truesdell C, Noll W (1965) Handbuch der Physik, vol III/3. Springer, Berlin

    Google Scholar 

  28. Ogden RW (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  29. Zhang JM, Rychlewski J (1990) Arch Mech 42:267

    CAS  Google Scholar 

  30. Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer Wien, p 1

  31. Boehler JP (1977) ZAMM 57:323

    Article  Google Scholar 

  32. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  33. Hill R (1968) J Mech Phys Solids 16:229

    Article  Google Scholar 

  34. Müller S, Qi T, Yan BS (1994) Ann Inst Henri Poincaré Analyse non linéaire 11:217

    Google Scholar 

  35. Ball JM (1996) Bull Amer Math Soc 33:269

    Google Scholar 

  36. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Am J Physiol Heart Circ Physiol 289:2048

    Article  CAS  Google Scholar 

  37. Vande Geest JP, Sacks MS, Vorp DA (2004) ASME J Biomech Eng 126:815

    Article  Google Scholar 

  38. Treloar LRG (1975) The physics of rubber elasticity, 3rd ed. Oxford University Press

  39. Gent A (2004) Rubber Chem Technol 96:59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Ehret.

Appendix

Appendix

Relations between the generalized structural tensors (15) and (18)

In the following, the relations between the weight factors w (r) i , i = 1,...,n, associated with principal material directions (18) and the factors v (r) i , i = 0,1,...,n, related to matrix and fibers (15) are given for some basic fiber constellations.

Unidirectional alignment of one family of fibers leads to transverse isotropy with respect to the fiber direction. Setting n = 1 in (15)1 and insertion of (14)1, (15)2 leads in view of (17)2 to

$$ \tilde{\mathbf L}_r=v_0^{(r)}{\mathbf L}_0+v_1^{(r)}{\mathbf L}_1 =\frac{1}{3}\left(1-v_1^{(r)}\right){\mathbf I}+v_1^{(r)}{\mathbf L}_1 =\frac{1}{3}\left(1+2v_1^{(r)}\right)\widehat{\mathbf L}_1 +\frac{2}{3}\left(1-v_1^{(r)}\right)\widehat{\mathbf L}_2. $$

In a fiber reinforced material, orthotropy may be the result of different fiber configurations. We first consider the case where fibers are aligned in three mutually orthogonal fiber directions coinciding with the principal material directions, so that \(\user2{l}_i=\user2{m}_i, i=1,2,3\). Then, in view of (15,16,18) one obtains

$$ \tilde{\mathbf L}_r =\frac{1} {3}\sum\limits_{i=1}^{3}\left[1-v_1^{(r)}-v_2^{(r)}-v_3^{(r)}+3v_i^{(r)} \right]\widehat{\mathbf L}_i. $$

A material with two orthogonal fiber families is likewise orthotropic, where the principal directions are given by the two fiber directions, so that \(\user2{l}_1=\user2{m}_1\) and \(\user2{l}_2=\user2{m}_2\), and the direction normal to the plane in which the fibers lie. The generalized structural tensors (18) are thus given by

$$ \tilde{\mathbf L}_r =\frac{1} {3}\left[1+2v_1^{(r)}-v_2^{(r)}\right] \widehat{\mathbf L}_1 + \frac{1} {3}\left[1-v_1^{(r)}+2v_2^{(r)}\right]\widehat{\mathbf L}_2 + \frac{1}{3}\left[1-v_1^{(r)}-v_2^{(r)}\right]\widehat{\mathbf L}_3. $$

Two equivalent families of fibers (v (r)2  = v (r)1 ) aligned in two arbitrary directions result in orthotropy. The principal material directions are given by the bisectors of the two fiber directions and the normal to the plane in which the fibers lie. The fiber directions can be expressed in terms of the principal material directions by

$$ \user2{m}_1=\cos \alpha\,\user2{l}_1+\sin \alpha \,\user2{l}_2,\,\,\user2{m}_2=\cos \alpha\,\user2{l}_1-\sin \alpha \,\user2{l}_2, $$

where the angle between the fibers is 2α. Hence, the generalized structural tensors read as

$$ \tilde{\mathbf L}_r= \frac{1} {3}\left[1+(6\cos^2\alpha-2)v_1^{(r)}\right]\widehat{\mathbf L}_1 +\frac{1}{3}\left[1+(6\sin^2\alpha-2)v_1^{(r)}\right]\widehat{\mathbf L}_2 +\frac{1}{3}\left[1-2v_1^{(r)}\right]\widehat{\mathbf L}_3. $$

Finally, if there is a third fiber family i = 3 aligned normal to the plane spanned by the mechanically equivalent fiber families, we have

$$ \tilde{\mathbf L}_r= \frac{1} {3}\left[1+(6\cos^2\alpha-2)v_1^{(r)}-v_3^{(r)}\right] \widehat{\mathbf L}_1 +\frac{1}{3}\left[1+(6\sin^2\alpha-2)v_1^{(r)}-v_3^{(r)}\right]\widehat{\mathbf L}_2 +\frac{1}{3}\left[1-2v_1^{(r)}+2v_3^{(r)}\right]\widehat{\mathbf L}_3. $$

Additionally, superposition of several of the given cases may preserve the orthotropic material symmetry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehret, A.E., Itskov, M. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J Mater Sci 42, 8853–8863 (2007). https://doi.org/10.1007/s10853-007-1812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1812-6

Keywords

Navigation