Skip to main content
Log in

Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bacteria were genetically engineered to produce two spider silk protein variants composed of basic repeat units combining a flagelliform elastic motif ([GPGGX]4) and a major ampullate silk strength motif ([linker/poly-alanine]. The secondary structures of the pure recombinant proteins in solution were determined by circular dichroism. The data presented suggest that the nature of the 5th and 10th amino acid (X) in the [GPGGX]2 elastic motif and temperature have an impact on the amount of β-sheet structures present in the proteins. More specifically, increasing temperatures seem to be positively correlated with β-sheet formation for both proteins and this state is irreversible or reversible when both X (5th and 10th) in the elastic motif are hydrophilic or hydrophobic respectively. Moreover, each pure silk-like protein was able to spontaneously self-assemble into films from aqueous solutions. Two kinds of synthetic fibers were made by pulling fibers from these preassembled films as well as spinning fibers from each protein resolubilized in HFIP. The mechanical data show that the pulled fibers are far tougher than the spun fibers suggesting a better fiber organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gosline J, Denny M, DeMont M (1984) Nature 309:551

    Article  CAS  Google Scholar 

  2. Stauffer S, Coguill S, Lewis R (1994) J Arachnol 22:5

    Google Scholar 

  3. Gosline J, Guerette P, Ortlepp C, Savage K (1999) J Exp Biol 202:3295

    CAS  Google Scholar 

  4. Denny M (1976) J Exp Biol 65:483

    Google Scholar 

  5. Hinman M, Lewis R (1992) J Biol Chem 267:19320

    CAS  Google Scholar 

  6. Hayashi C, Shipley N, Lewis R (1999) Int J Biol Macromol 24:271

    Article  CAS  Google Scholar 

  7. Simmons A, Michal C, Jelinski L (1996) Science 271:84

    Article  CAS  Google Scholar 

  8. Termonia Y (1994) Macromolecules 27:7378

    Article  CAS  Google Scholar 

  9. Hayashi C, Lewis R (1998) Mol Biol 275:773

    Article  CAS  Google Scholar 

  10. Hayashi C, Lewis R (2000) Science 287:1477

    Article  CAS  Google Scholar 

  11. Becker N, Oroudjev E, Mutz S, Cleveland J, Hansma P, Hayashi C, Makarov D, Hansma H (2003) Nat Mater 2:278

    Article  CAS  Google Scholar 

  12. Hayashi C, Lewis R (2001) BioEssays 23:750

    Article  CAS  Google Scholar 

  13. Zhou Y, Wu S, Conticello V (2001) Biomacromolecules 2:111

    Article  CAS  Google Scholar 

  14. Chang D, Ventachalam C, Prasad K, Urry D (1989) J Biomol Struct Dynamics 6(i5):851

    CAS  Google Scholar 

  15. Urry D, Shaw R, Prasad K (1985) Biochem Biophys Res Commun 130(i1):50

    Article  CAS  Google Scholar 

  16. Urry D, Hugel T, Seitz M, Gaub H, Sheiba L, Dea J, Xu J, Parker T (2002) Phylos Trans R Soc London, Ser B 357(i1418):169

    Article  CAS  Google Scholar 

  17. Tatham A, Hayes L, Shewry P, Urry D (2001) Biochim Biophys Acta 1548:187

    CAS  Google Scholar 

  18. Hutchinson E, Thornton J (1994) Protein Sci 3:2207

    Article  CAS  Google Scholar 

  19. Wilmot C, Thornton J (1988) J Mol Biol 5:221

    Article  Google Scholar 

  20. Lewis R, Hinman M, Kothakota S, Fournier M (1996) Protein Expr Purif 7:400

    Article  CAS  Google Scholar 

  21. Birnboim H, Doly J (1979) Nucleic Acids Res 7:1513

    Article  CAS  Google Scholar 

  22. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Second Edn. Cold Spring Harbor Laboratory

  23. Wong C, Sridhara S, Bardwell J, Jakob U (2000) BioTechniques 28:426

    CAS  Google Scholar 

  24. Whithmore L, Wallace B (2004) Nucleic Acids Res, Web Server issue 24:W668

  25. Scheller J, Guhrs K, Grosse F, Conrad U (2001) Nature 19:573

    Article  CAS  Google Scholar 

  26. Teulé F, Jung S, Wood J, Marcotte W, Ellison M, Abbott A (2002) In: Brebbia C, Sucharov L, Pascolo P (eds) Design and nature, Udine, Italy. WIT press, p 379

  27. Prince J, McGrath K, DiGirolamo C, Kaplan D (1995) Biochemistry 34:10879

    Article  CAS  Google Scholar 

  28. Fahnestock S, Irvin S (1997) Appl Microbiol Biotechnol 47:23

    Article  CAS  Google Scholar 

  29. Fahnestock S, Bedzyk L (1997) Appl Microbiol Biotechnol 47:33

    Article  CAS  Google Scholar 

  30. Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Appl Microbiol Biotechnol 49:31

    Article  CAS  Google Scholar 

  31. Dicko C, Knight D, Kenney J, Vollrath F (2004) Biomacromolecules 5:2105

    Article  CAS  Google Scholar 

  32. Vollrath F, Knight D (2001) Nature 410:541

    Article  CAS  Google Scholar 

  33. Knight D, Vollrath F (2001) Naturwissenschaften 88:179

    Article  CAS  Google Scholar 

  34. Robson P, Wright G, Sitarz E, Maiti A, Rawa M, Youson J, Keeley F (1993) J Biol Chem 268(2):1440

    CAS  Google Scholar 

  35. Rauscher S, Baud S, Miao M, Keeley F, Pomès R (2006) Structure 14:1667

    Article  CAS  Google Scholar 

  36. Creighton T (1993) Proteins: structures and molecular properties, Second Edn. Freeman, New York

    Google Scholar 

  37. Haq S, Khan R (2005) Int J Biol Biomacromolecules 36:47

    Article  CAS  Google Scholar 

  38. Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Biochemistry 44:4727

    Article  CAS  Google Scholar 

  39. Xu M, Lewis R (1990) Proc Natl Acad Sci USA 87:7120

    Article  CAS  Google Scholar 

  40. Chen X, Shao Z, Vollrath F (2006) Soft Matter 2:448

    Article  CAS  Google Scholar 

  41. Blackledge T, Hayashi C (2006) J Exp Biol 209:2452

    Article  Google Scholar 

  42. Blackledge T, Hayashi C (2006) J Exp Biol 209:3131

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Michael B Hinman (Department of Molecular Biology, University of Wyoming) for providing the original A1, Y1 and S8 pBluescript clones, and for performing the amino acid analyses of the recombinant proteins. We also want to thank Professor Michael S Ellison (School of Materials Science and Engineering, Clemson University) for his valuable advice on the mechanical testing methods and analyses. This research was supported by grants from NIH, NSF and AFoSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Teulé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teulé, F., Furin, W.A., Cooper, A.R. et al. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42, 8974–8985 (2007). https://doi.org/10.1007/s10853-007-1642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1642-6

Keywords

Navigation