Skip to main content
Log in

RETRACTED ARTICLE: Determination of dopant of ceria system by density functional theory

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

This article was retracted on 12 February 2016

Abstract

Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Inaba H, Tagawa H (1996) Solid State Ionics 83:1

    Article  Google Scholar 

  2. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  Google Scholar 

  3. Hibino T, Hashimoto A, Inoue T, Tokuno J-I, Yoshida S-I, Sano M (2000) Science 288:2031

    Article  Google Scholar 

  4. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265

    Article  Google Scholar 

  5. Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135

    Article  Google Scholar 

  6. Kim DJ (1989) J Am Ceram Soc 72:1415

    Article  Google Scholar 

  7. Kilner J (1983) Solid State Ionics 8:201

    Article  Google Scholar 

  8. Kilner J, Brook RJ (1983) Solid State Ionics 6:237

    Article  Google Scholar 

  9. Andersson DA (2006) Proc Ac USA 103:3518

    Article  Google Scholar 

  10. Schewartz K (2006) Proc Nat Ac USA 102:3497

    Google Scholar 

  11. Faber J, Geoffroy C, Roux A, Sylvestre A, Abélard P (1989) Appl Phys A 49:225

    Article  Google Scholar 

  12. Gerhardt-Anderson R, Nowick AS (1981) Solid State Ionics 5:547

    Article  Google Scholar 

  13. Wang DY, Park DS, Griffith J, Nowick AS (1981) Solid State Ionics 2:95

    Article  Google Scholar 

  14. Butler V, Catlow CRA, Fender BEF, Harding JH (1983) Solid State Ionics 8:109

    Article  Google Scholar 

  15. Balducci G, Kaspar J, Fornasiero P, Graziani M (2000) Chem Mater 12:677

    Article  Google Scholar 

  16. Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339

    Article  Google Scholar 

  17. Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z (2003) Solid State Ionics 160:109

    Article  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  Google Scholar 

  19. Berry RS, Rice SA, Ross J (2000) Physical chemistry. Oxford University Press, Oxford, pp 512–513

    Google Scholar 

  20. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  21. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  Google Scholar 

  22. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601

    Article  Google Scholar 

  23. Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Phys Rev B 64:115108

    Article  Google Scholar 

  24. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  25. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  Google Scholar 

  26. Yamazaki S, Matsui T, Ohashi T, Arita Y (2000) Solid State Ionics 136–137:913

    Article  Google Scholar 

  27. Krishnamurthy R, Yoon YG, Srolovitz DJ, Car R (2004) J Am Ceram Soc 87:1821

    Article  Google Scholar 

  28. Gschneider KA Jr (1985) J Less Common Metals 114:29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selladurai.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10853-016-9806-x

Following detailed consultation with the Editor-in-Chief, the publisher has retracted this article, since it plagiarizes a paper entitled “Optimization of ionic conductivity in doped ceria” which was authored by D. A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, and B. Johansson, published in Proceedings of the National Academy of Science in 2006 103:3518–3521.

An erratum to this article is available at http://dx.doi.org/10.1007/s10853-016-9806-x.

About this article

Cite this article

Muthukkumaran, K., Bokalawela, R., Mathews, T. et al. RETRACTED ARTICLE: Determination of dopant of ceria system by density functional theory. J Mater Sci 42, 7461–7466 (2007). https://doi.org/10.1007/s10853-006-1486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1486-5

Keywords

Navigation