Skip to main content
Log in

Microscopic structural evolution in terms of porosity in high-Tc superconductors

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The low critical current densities of high-Tc superconductors materials can be related to the microstructural imperfections such as pores and microcracks, which reduce the effective current carrying cross section.

The present work examines the characterisation of the state of microstructure and its evolution during thermal treatment of Bi2Sr2Ca1Cu2O8. The dilatometric analysis was used to study the shrinkage mechanism during sintering. The microstructure of the sintered samples was characterised in terms of pores distribution and apparent density. Open porosity was measured by mercury porosimeter.

In order to compare the results, ultrasonic characterisation such as the longitudinal and transverse wave velocities in the ceramic was carried out. From an ultrasonic point of view, these microstructural features act as inhomogeneities and the ultrasonic parameters will depend on the geometrical arrangement of microstructure (pores have an effect both on Young’s modulus and attenuation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernodz JG, Muller KA (1986) Z Phys B 64:189

    Article  Google Scholar 

  2. Chu PH, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Huang CJ (1987) Phys Rev Lett 58:911

    Article  Google Scholar 

  3. Maeda M, Tanaka Y, Fukukum M, Asano T (1988) Jpn J Appl Phys 27:L209

    Article  CAS  Google Scholar 

  4. Nes OM, Fossheim K, Motolura N, Kitazawa K (1991) Physica C 185–189:1391

    Article  Google Scholar 

  5. Wu C-T, Goretta Kc, Poeppel RB (1993) Appl Supercond 1(1/2):33

    Article  CAS  Google Scholar 

  6. Yasuko Torii, Hirokazu, Hiromi Takei, Kouji Tada (1990) Jpn J Appl Phys 29(6):L 952

    Article  Google Scholar 

  7. Guerioune M, Boudour A, Boumaïza Y (1998) congrès Euro méditerranéen. Nantes, France

    Google Scholar 

  8. Eva Dresder-Krasicka (1990) Review of Progress in Qualitative N.D.E., vol 9

  9. Munro RG (1999) In: Poole CP (ed) Handbook of superconductivity, Academic Press, New York, pp 570–625

  10. Alford NMcN, Birchall JD, Clegg WJ, Harmer MA, Kendall K (1988) J Mater Sci 23:761

    Article  CAS  Google Scholar 

  11. Phani KK, Niyogi SK (1986) J Mater Sci Lett 5:427

    Article  CAS  Google Scholar 

  12. Blendel JE, Chiang CK, Crammer DC, Freiman SW, Fuller ER Jr, Drescher-Krasicka E, Johnson WL, Ledbetter HM, Bennet LH, Swartzendriber LJ, Marinenko RB, Mykebust RL, Bright DS, Newbery DE (1987) Adv Ceram Mater 2:512

    Article  Google Scholar 

  13. Roth DJ, Dolhert LE (1990) Mater Eval 45:958

    Google Scholar 

  14. Mukhopadhyay AK, Phani KK (2000) J Eur Ceram Soc 20:29

    Article  CAS  Google Scholar 

  15. Round R, Bridge B (1987) J Mater Sci Lett 6:1471

    Article  CAS  Google Scholar 

  16. Dong J, Deng T, Li F, Yao Y (1990) Phys Rev B 42:301

    Article  CAS  Google Scholar 

  17. Chang F, Ford PJ, Saunders GA, Jiaqiang Li, Almond DP, Chapman B, Cankurtaran M, Poeppel RB, Goretta KC (1993) Supercond Sci Technol 6:484

    Article  CAS  Google Scholar 

  18. Ravinder Reddy R, Muralidhar M, Hari Babu V, Venugopal Reddy P (1995) Supercond Sci Technol 8:101

    Article  Google Scholar 

  19. Reddy PV, Murakami M (1999) Modern Phys Lett B 13(8):261

    Article  CAS  Google Scholar 

  20. Chandra Sekhar M, Gopala Krishna B, Ravinder Reddy R, Venugopal Reddy P, Suryanarayana SV (1995) Supercond Sci Technol 9:29

    Article  Google Scholar 

  21. Ahn Beam-Shu (2002) Bull Korean Chem Soc 23:1304

    Article  CAS  Google Scholar 

  22. Briggs A (1992) Acoustic microscopy. Clarendon Press, Oxford

    Google Scholar 

  23. Ledbetter H, Minglei T, Sudookkim N (1990) Phase Trans 23:61

    Article  CAS  Google Scholar 

  24. Anderson A, Russel GJ (1991) Physica C 185–189:1389

    Article  Google Scholar 

  25. Gigot V, Cros B, Saurel JM (1999) Acta Acoustica 85:346

    CAS  Google Scholar 

  26. Cros B, Gigot V, Despaux G (1997) Appl Surf Sci 119:242

    Article  CAS  Google Scholar 

  27. Guerioune M (1994) Thèse Doctorat d’Etat es science, Université de Annaba, pp 52–58

  28. Kushibiki J, Chubachi N (1985) Electronic Lett 19(10):359

    Article  Google Scholar 

  29. David W, Johonson JR, Warren W. Rodes (1989) J Am Ceram Soc 72(12):2346

    Article  Google Scholar 

  30. Tsukahara Y, Neron C, Jen CK, Kushibiki J (1993) Ultrasonic Symposium, 593

  31. Brunet N, Cros B, Despaux G, Saurel JM (1998) Eur J Appl Phys 2:209

    Article  CAS  Google Scholar 

  32. Sheppard CGR, Wilson T (1981) Appl Phys Lett 38:858

    Article  Google Scholar 

  33. Boumaiza Y, Hadjoub Z, Doghmane A, Deboub L (1999) J Mat Sc Lett 18:295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasr-Eddine Chakri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakri, NE., Benaldjia, A., Amara, A. et al. Microscopic structural evolution in terms of porosity in high-Tc superconductors. J Mater Sci 42, 3419–3424 (2007). https://doi.org/10.1007/s10853-006-1201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1201-6

Keywords

Navigation