Skip to main content
Log in

Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries

  • Size-Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosized lithiated iron oxides with 10 and 50 wt.% SiO2 were prepared by a sol–gel method using 1 M Fe(NO3)3 · 9H2O and 1 M LiNO3 aqueous solutions in a stoichiometric ratio of 1:1 and colloidal silica. Dried xerogel was calcinated at 700 °C for 4 h in air. The X-ray data of samples synthesized using 10% and 50% SiO2 showed the presence of a mixture of two phases: α-LiFeO2 and Li1−xFe5O8 (0 < x ≤ 0.1) for a sample containing 10% SiO2 and LiFe(SiO3)2 and Fe2O3 (h) for a sample with 50% SiO2. The electrochemical behaviour of the compounds was investigated galvanostatically within the 0.01–3.0 V range at a current density of 0.80 mA cm−2. The Li/LixFeyOz (10%) · SiO2 cell showed a high initial reversible capacity of 1,080 mA h g−1 and a capacity of 600 mA h g−1 at the 30th cycle. Accounting these results is the presence of a SiO2 phase which stabilizes the structure of the active mass on cycling.

The mean charge voltage (1.8 V) and the discharge voltage of 1.0 V versus Li+ reference electrode as well as the high reversible capacity indicate that this material is suitable for use as anode in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winter M, Bezenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725

    Article  CAS  Google Scholar 

  2. Behm M, Irvine JTS (2002) Electrochem Acta 47:1727

    Article  CAS  Google Scholar 

  3. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395

    Article  CAS  Google Scholar 

  4. Badway F, Plitz I, Grugeon S, Laruelle S, Dolle M, Gozdz AS, Tarascon J-M (2002) Electrochem Solid State Lett 5:A115

    Article  CAS  Google Scholar 

  5. Obrovac MN, Dunlap RA, Sanderson RJ, Dahn (2001) J Electrochem Soc 148(6):A576

    Article  CAS  Google Scholar 

  6. Lee YT, Yoon CS, Lee YS, Sun Y-K (2004) J Power Sources 134:88

    Article  CAS  Google Scholar 

  7. Xu JJ, Jain G (2003) Electrochem Solid State Lett 6(9):A190

    Article  CAS  Google Scholar 

  8. Tabuchi M, Ado K, Sakaevbe H, Masquelier C, Kageyama H, Naklamura O (1995) Solid State Ionics 79:220

    Article  CAS  Google Scholar 

  9. Shirane T, Kanno R, Kawamoto Y, Takeda Y, Kamiyama T, Izumi F (1995) Solid State Ionics 79:227

    Article  CAS  Google Scholar 

  10. Kanno K, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M, Yamaguchi Y (1996) J Electrochem Soc 143:2435

    Article  CAS  Google Scholar 

  11. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) J Solid State Electrochem 8:450

    Article  CAS  Google Scholar 

  12. Thackeray MM, David WIF, Goodenough JB (1982) Mat Res Bul 17:785

    Article  CAS  Google Scholar 

  13. Poizot P, Laruelle S, Gugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496

    Article  CAS  Google Scholar 

  14. Lee YS, Sato S, Sun YK, Kobayakawa K, Sato Y (2003) Electrochem Commun 5:359

    Article  CAS  Google Scholar 

  15. Abraham KM, Pasquariello DM, Willstaedt EB (1990) J Electrochem Soc 137(3):743

    Article  CAS  Google Scholar 

  16. Kim J, Manthiram A (1999) J Electrochem Soc 146(12):4371

    Article  CAS  Google Scholar 

  17. Choi S, Manthiram A (2002) J Electrochem Soc 149(5):A570

    Article  CAS  Google Scholar 

  18. Chen J, Xu L, Li W, Gou X (2005) Adv Mater 17:582

    Article  CAS  Google Scholar 

  19. Kraus W, Nozle G (2000) Power cell program for Windows Ver.2.4. BAM, Berlin

    Google Scholar 

  20. Manev V, Momchilov A, Tagawa K, Kozawa A (1993) Prog Batteries Battery Mater 12:157

    Google Scholar 

  21. Klein C, Hurlbut Jr CS (1999) In: Manual mineralogy (after JD Dana). Wiley, New York, p 682

  22. Pommier C, Downs R, Stimpfl M, Redhammer G, Bonner Denton M (2005) J Raman Spectrosc 36:864

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by The Bulgarian Science foundation: Contract X-1412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Uzunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzunov, I., Uzunova, S., Kovacheva, D. et al. Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries. J Mater Sci 42, 3353–3357 (2007). https://doi.org/10.1007/s10853-006-0905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0905-y

Keywords

Navigation