Skip to main content
Log in

Particle size effects in Rh/Al2O3 catalysts as viewed from a structural, functional, and reactive perspective: the case of the reactive adsorption of NO

  • Size-Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural-dynamic behaviour of γ-Al2O3 supported Rh nanoparticles under He, H2/He, and NO/He has been investigated using a newly developed methodology that permits dispersive EXAFS (EDE), diffuse reflectance infra red spectroscopy (DRIFTS), and mass spectrometry (MS) to be applied simultaneously to the study of gas-solid interactions. This reveals a considerably variability in nanoparticle habit (for 11 Å diameter nanoparticles as a function of temperature), and between 8 Å and 11 Å particles in their response to NO. The selectivity (N2/(N2 + N2O)) of the reactive interaction between NO and the supported Rh shows essentially no particle size dependence above 473 K: it is apparent, however, that considerable differences in some aspects of the structural behaviour of the 8 Å and 11 Å Rh particles do nonetheless, exist. At 373 < T < 473 K a clear divergence in structural, functional, and reactive response of the different sized supported Rh nanoparticles toward NO is observed. These observations are discussed in terms of the ability of different sized Rh particles to change structure in response to the reactive environment, the subsequent effect this has on the nitrosyl functionality that different phases may support, and the reactive pathways for NO conversion that may therefore arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. For example, Che M, Bennett CO (1989) Adv Catal 36:55

  2. For example, Nieuwenhuys BE (2000) Adv Catal 44:259

  3. Granger P, Dujardin C, Paul J-F, Leclercq G (2005) J Mol Cat A 228:241

    Article  CAS  Google Scholar 

  4. Arai H, Tominaga H (1976) J Catal 43:131–142

    Article  CAS  Google Scholar 

  5. Liang J, Wang HP, Spicer LD (1985) J Phys Chem 89:5840

    Article  CAS  Google Scholar 

  6. Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748

    Article  CAS  Google Scholar 

  7. Dictor R (1988) J Catal 109:89

    Article  CAS  Google Scholar 

  8. Hyde EA, Rudham R, Rochester CH (1988) J Chem Soc Faraday Trans 80:531

    Article  Google Scholar 

  9. Anderson JA, Millar GJ, Rochester CH (1990) J Chem Soc Faraday Trans 86:571

    Article  CAS  Google Scholar 

  10. Root TW, Fisher GB, Schmidt LD (1986) J Chem Phys 85:4679 and ibid (1986) 85:4687

    Article  CAS  Google Scholar 

  11. Loffreda D, Simon D, Sautet P (1998) Chem Phys Letts 291:15

    Article  CAS  Google Scholar 

  12. Solymosi F, Bansagi T, Novak E (1988) J Catal 112:183

  13. Newton MA, Dent AJ, Diaz-Moreno S, Fiddy SG, Evans J (2002) Angew Chem Intl Ed 41:2587

    Article  CAS  Google Scholar 

  14. Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Chem Comm 2382

  15. Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Catal Today, DOI: 10.1016/j.cattod.2006.09.034

    Article  CAS  Google Scholar 

  16. Newton MA, Fiddy SG, Guilera G, Jyoti B, Evans J (2005) Chem Comm 118

  17. Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Phys Chem Chem Phys 9:246

    Article  CAS  Google Scholar 

  18. See, for example, (a) Harkness IR, Cavers M, Rees LVC, Davidson JM, McDougall GS (1999) In: Marcus BK, Treacy MMJ, Higgins JB, Bisher ME (eds) Proceedings of the 12th International Zeolite Conference, vol IV. Materials Research Society, Warrendale, PA, p 2615; (b) Cavers M, Davidson JM, Harkness IR, McDougall GS, Rees LVC (1999) In: Froment GF, Waugh KC (eds) Reaction Kinetics and the development of catalytic processes, vol 122. Elsevier, Amsterdam, p 65

  19. Binsted N (1988) PAXAS: Programme for the analysis of X-ray adsorption spectra. University of Southampton

  20. Binsted N (1998) EXCURV98, CCLRC Daresbury Laboratory computer programme

  21. Newton MA, Dent AJ, Diaz-Moreno S, Fiddy SG, Jyoti B, Evans J (2006) Chem Eur J 12:1975

    Article  CAS  Google Scholar 

  22. Clausen BS, Norskov JK (2000) Topics Catal 10:221

    Article  CAS  Google Scholar 

  23. van Dorssen GE, Koningsberger DC (2003) Phys Chem Chem Phys 5:3549

    Article  Google Scholar 

  24. Vant Blik HFJ, Banzon JBAD, Huiznga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:13

    Google Scholar 

  25. Suzuki A, Inada Y, Yamaguchi A, Chihara T, Yuasa M, Nomura M, Iwasawa Y (2003) Angew Chem Intl Ed 42:4795

    Article  CAS  Google Scholar 

  26. Martens JHA, Prins R, Koningsberger DC (1989) J Phys Chem 93:3179

    Article  CAS  Google Scholar 

  27. Yang AC, Garland CW (1957) J Chem Phys 61:1504

    Article  Google Scholar 

  28. (a) Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Pascarelli S, Turin S (2001) J Phys Chem A 105:5965; (b) Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Turin S (2002) J Phys Chem B 106:4214

    Article  CAS  Google Scholar 

  29. Carol LA, Mann GS (1990) Oxid Met 34:1

    Article  CAS  Google Scholar 

  30. For instance, Salanov AN, Savchenko VI (1994) Kinet Catal 35:722

  31. Yao HC, Japar S, Shelef M (1977) J Catal 50:407

    Article  CAS  Google Scholar 

  32. Vis JC, van’t Blik HFJ, Huiizinga T, van Grondelle J, Priins R (1985) J Catal 95:333

    Article  CAS  Google Scholar 

  33. Chen JG, Colaianni ML, Chen PJ, Yates Jr JT, Fisher GB (1990) J Phys Chem 94:5059

    Article  CAS  Google Scholar 

  34. Beck DD, Carr CJ (1993) J Catal 144:296

    Article  CAS  Google Scholar 

  35. Beck DD, Capeheart TW, Wong C, Belton DN (1993) J Catal 144:311

    Article  CAS  Google Scholar 

  36. Burch R, Lloader PK, Cruise N (1996) Appl Catal A 375

  37. Dohmae K, Nonaka T, Seno Y (2005) Surf Interface Anal 37:11

    Article  Google Scholar 

  38. Zimowska M, Wagner JB, Dziedzic J, Camra J, Borzecka-Prokop B, Najbar M (2006) Chem Phys Letts 417:137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the EPSRC UK (Grant Number GR/60744/01) and the authors thank the EPSRC for the provision of post doctoral and PhD funding to MAN and BJ respectively. The ESRF are thanked for the provision of facilities within a long-term proposal awarded for this research. John James (University of Southampton), and Florian Perrin (ESRF) are gratefully acknowledged for their technical contributions to this work. Dr Gordon McDougall is also greatly thanked for the technical schematics of a novel DRIFTS cell designed and constructed at the department of chemistry, University of Edinburgh, Scotland. MAN would further like to thank the directors of the ESRF for funding for the continued development and implementation of this methodology at the ESRF for the wider use of the scientific community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, M.A., Dent, A.J., Fiddy, S.G. et al. Particle size effects in Rh/Al2O3 catalysts as viewed from a structural, functional, and reactive perspective: the case of the reactive adsorption of NO. J Mater Sci 42, 3288–3298 (2007). https://doi.org/10.1007/s10853-006-0751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0751-y

Keywords

Navigation