Skip to main content

Advertisement

Log in

Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new generation of organic/inorganic composites is offering a promising approach for creating biocompatible and biodegradable materials with mechanical properties that match that of human bone better than traditional metallic implants. Here, we report a novel technique whereby hydroxyapatite powder is encapsulated in polylactide-based microspheres, processed by an emulsion-solvent evaporation method, and then used as the building blocks to produce dense, microstructurally-uniform composites through a hot pressing route. The mechanical properties of these composites––both ab initio and after in vitro degradation in a simulated environment- were subsequently characterized. Although despite in vitro degradation remains an issue, the Young’s modulus, bending strength and fracture resistance were higher than the corresponding minimum values for human cortical bone. These results suggest that the hot-pressing of hydroxyapatite/polylactide microspheres can be a viable route for the synthesis of load-bearing bone-replacement materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The conventional route mentioned here has been detailed elsewhere [22] and involved dissolving PLA in methylene chloride and adding HA powders/whiskers to the solution. The slurry was dried to remove the residual solvent and the dried pellets hot pressed under various conditions (time, temperature and pressure).

  2. A stirring time of 2 h was employed to obtain uniform spheres as it was noticed that with longer times, the microspheres began to disintegrate.

References

  1. Hui SL, Slemenda CW, Johnston CC (1988) J Clin Invest 81:1804

    Article  CAS  Google Scholar 

  2. Jennings AG, de Boer P (1999) Injury 30:169

    Article  CAS  Google Scholar 

  3. Hall MJ, Owings MF (2000) National Hospital Discharge Survey. Advance Data from Vital and Health Statistics, Vol. 329, 2002. National Center for Health Statistics, Hyattsville, Maryland

  4. Biomaterials, Medical Implant Science: Present and Future Perspectives. A National Institutes of Health Workshop, October 16–17, 1995, Summary Report

  5. NIH Technology Assessment Conference on Improving Medical Implants Performance through Retrieval Information: Challenges, Opportunities January 10–12, 2000

  6. Biomimetics, Tissue Engineering, Biomaterials, National Institute of Dental Research Workshop, September 24–26, (1996)

  7. Frontiers of Engineering (1999) National Academic Press, Washington DC

  8. Brunski JB (1992) Clin Mater 10:153

    Article  CAS  Google Scholar 

  9. Black J (1999) Biological performance of materials fundamentals of biocompatibility, 3rd ed. Marcel Dekker. Xii, New York, p 463

  10. Heimann RB (2002) CMU Journal 1:23

    Google Scholar 

  11. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Med Eng Phys 20:92

    Article  CAS  Google Scholar 

  12. Hench L.L (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  13. Ambrose CG, Clanton TO (2004) Ann Biomed Eng 32:171

    Article  Google Scholar 

  14. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Biomaterials 24:3247

    Article  CAS  Google Scholar 

  15. Ignjatovic N, Uskokovic D (2004) Appl Surf Sci 238:314

    Article  CAS  Google Scholar 

  16. Ignjatovic N, Tomic S, Dakic M, Mijkovic M, Plavsic M, Uskokovic D (1999) Biomaterials 20:809

    Article  CAS  Google Scholar 

  17. Zhang R, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446–455

    Google Scholar 

  18. Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuna M, Nakamura T (2000) Biomaterials 21:889

    Article  CAS  Google Scholar 

  19. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Biomaterials 22:19

    Article  CAS  Google Scholar 

  20. Hile DD, Doherty SA, Trantolo DJ (2004) J Biomed Mater Res Part B: Appl Biomater 71B:201

    Article  CAS  Google Scholar 

  21. McManus AJ, Doremus RH, Siegel RW, Bizios R (2004) Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res 72A

  22. Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP (2005) Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater Sci Eng: C Available online October 6, 2005

  23. Tas AC (2001) J Am Ceram Soc 84:295

    Article  CAS  Google Scholar 

  24. Van Wezel AL (1967) Nature 216:64

    Article  Google Scholar 

  25. Qiu Q-Q, Ducheyne P, Ayyaswamy PS (2000) J Biomed Mater Res 52:66

    Article  CAS  Google Scholar 

  26. Mathiowitz E, Saltzman WM, Domb A, Dor P, Langer R (1988) J Appl Polymer Sci 35:755

    Article  CAS  Google Scholar 

  27. Couvreur P, Puisieux F (1993) Adv Drug Delivery Rev 10:141

    Article  CAS  Google Scholar 

  28. O’Donnell P, McGinity JW (1997) Adv Drug Delivery Rev 28:57

    Article  Google Scholar 

  29. Kinney JH, Nichols MC (1992) Annu Rev of Mater Sci 22:121

    Article  CAS  Google Scholar 

  30. Strojny A, Xia X, Tsou A, Gerberich WW (1998) J Adhes Sci Technol 12:1299

    CAS  Google Scholar 

  31. Sneddon IN (1965) Int J Eng Sci 3:47

    Article  Google Scholar 

  32. Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:613

    Article  CAS  Google Scholar 

  33. ASTM E399–90 (Reapproved 1997) In: Annual book of ASTM standards, Vol. 03.01: Metals-Mechanical Testing; Elevated and Low-temperature Tests; Metallography. 2002, ASTM, West Conshohocken, Pennsylvania, USA

  34. Currey JD (1998) Proc Instn Mech Engrs 212H:399

    Google Scholar 

  35. Qing-Qing Qiu PD, Portonovo S (2000) J Biomed Mater Res 52:66

    Article  Google Scholar 

  36. Hench L.L. (1991) J Am Ceram Soc74:1487

    Article  CAS  Google Scholar 

  37. Tsuji H, Miyauchi S (2001) Biomacromolecules 2:597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) under Grant No. 5R01 DE015633. We acknowledge the support of the dedicated tomography beamline (BL 8.3.2) at the Advanced Light Source (ALS), supported by the Department of Energy under Contract No. DE-AC03-76SF00098. The authors also wish to thank Drs. Alastair MacDowell, John H. Kinney and Robert O. Ritchie for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Tomsia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russias, J., Saiz, E., Nalla, R.K. et al. Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J Mater Sci 41, 5127–5133 (2006). https://doi.org/10.1007/s10853-006-0449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0449-1

Keywords

Navigation