Skip to main content
Log in

Contact damage initiation in silicon nitride in Hertzian indentation: role of microstructure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A bearing-grade silicon nitride with fine microstructure and a turbine-grade silicon nitride with coarse microstructure were studied with respect to the influence of their microstructures on (a) crack-growth-resistance behavior, (b) strength degradation due to Vickers indentation, and (c) crack initiation in quasi-static indentation with WC spheres. The turbine grade exhibited strong rising crack-growth resistance and less strength degradation due to Vickers indentation as compared to the bearing grade. Partial-ring or C cracks initiated in Hertzian indentation and the critical loads exhibited linear (Auerbach) variation with indenter radius above a critical value. For smaller radius, indentation plasticity preceded C-crack initiation. The bearing grade exhibited higher critical loads for C-crack initiation, but showed greater extension toward a ring crack than the turbine grade. These differences in crack initiation and growth were consistent with the differences in crack initiation and propagation toughness of the two grades. A ball-on-ball impact analysis was used to predict the critical velocities for initiating C cracks in the impact of silicon nitride surfaces with WC spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jack KH (2000) Mater Sci Forum 325–326:255

    Article  Google Scholar 

  2. Tajima Y (1993) In: Silicon nitride ceramics, scientific and technological advances, Materials Research Society Symposium 287:189

  3. Wang L, Snidle RW, Gu L (2000) Wear 246:159

    Article  CAS  Google Scholar 

  4. Cundill RT (1992) In: Carlsson R, Johannson T, Kahlman L (eds) 4th International Symposium on Ceramic Materials and Components for Engines, Goteborg, Sweden, 1991, Elsevier Science Publishers, Ltd, p 905

  5. Kawase H, Kato K, Matsuhisa T, Mizuno T (1993) Trans ASME J Eng Gas Turbines Power 115:23

    Article  CAS  Google Scholar 

  6. Yoshida M, Truruzono S, Ono T, Gejima H (1994) Proc Int Gas Turbine Aeroengine Cong Expo, Paper # 94-GT-332

  7. Boggs RN (1995) Design News, January 23

  8. ASTM Standard C-1161-90 (1990) Standard test method for flexural strength of advanced ceramics at ambient temperature, American Society for Testing and Materials, Philadelphia, PA

  9. Munz D, Bubsey RT, Shannon JL Jr (1980) J Test Eval 8:103

    Article  CAS  Google Scholar 

  10. Munz D, Bubsey RT, Srawley JE (1980) Int J Fracture 16:359

    Article  Google Scholar 

  11. Ramachandran N, Shetty DK (1991) J Am Ceram Soc 74:2634

    Article  CAS  Google Scholar 

  12. Cook RF, Lawn BR (1983) J Am Ceram Soc 66(11):C-200

    Article  Google Scholar 

  13. Marshall DB, Lawn BR (1979) J Mater Sci 14:2001

    Article  Google Scholar 

  14. Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63(9–10):574

    Article  CAS  Google Scholar 

  15. Krause RF Jr (1988) J Am Ceram Soc 71(5):338

    Article  CAS  Google Scholar 

  16. Marshall DB, Lawn BR, Chantikul P (1979) J Mater Sci 14:2225

    Article  Google Scholar 

  17. Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):539

    Article  CAS  Google Scholar 

  18. Newman Jr JC, Raju IS (1981) Eng Frac Mech 15:291

    Article  Google Scholar 

  19. Li CW, Yamanis J (1989) Ceram Eng Sci Proc 10:632

    Article  CAS  Google Scholar 

  20. Ramachandran N, Shetty DK (1993) J Mater Sci 28:6120

    Article  CAS  Google Scholar 

  21. Cook RF, Clarke DR (1988) Acta Metall 36(3):555

    Article  CAS  Google Scholar 

  22. Lawn BR (1998) J Am Ceram Soc 81:1977

    Article  CAS  Google Scholar 

  23. Roesler FC (1956) Proc Phys Soc London B69:55

    Article  Google Scholar 

  24. Evans AG, Wilshaw TR (1976) Acta Metall 24:939

    Article  CAS  Google Scholar 

  25. Becher PF, Sun EY, Plucknett KP, Alexander KB, Hsueh CH, Lin HT, Waters SB, Westmoreland CG, Kang ES, Hirao K, Brito ME (1998) J Am Ceram Soc 81(11):2821

    Article  CAS  Google Scholar 

  26. Sun EY, Becher PF, Plucknett KP, Hsueh CH, Alexander KB, Waters SB, Hirao K, Brito ME (1998) J Am Ceram Soc 81(11):2831

    Article  CAS  Google Scholar 

  27. Becher PF, Hwang SL, Lin HT, Tiegs TN (1994) In: Hoffmann MJ, Petzow G (eds) Tailoring of mechanical properties of Si3N4 ceramics. Kluwer Academic Publishers, Boston, pp 87–100

  28. Evans AG, McMeeking RM (1986) Acta Metall 34(12):2435

    Article  Google Scholar 

  29. Budiansky B, Amazigo JC, Evans AG (1988) J Mech Phys Solids 36(2):167

    Article  Google Scholar 

  30. Becher PF, Hsueh CH, Angelini P, Tiegs TN (1988) J Am Ceram Soc 71(12):1050

    Article  CAS  Google Scholar 

  31. Hertz H (1896) Hertz’s Miscellaneous Papers; Chapters 5 and 6. Macmillan, London, UK

    Google Scholar 

  32. Auerbach F (1891) Ann Phys Chem 43:61

    Article  Google Scholar 

  33. Frank FC, Lawn BR (1967) Proc R Soc London A299:291

    Article  Google Scholar 

  34. Lawn BR (1993) Fracture of brittle solids, chap. 8. Cambridge University Press, p 283

  35. Lee SK, Wuttiphan S, Lawn BR (1997) J Am Ceram Soc 80:2367

    Article  CAS  Google Scholar 

  36. Cundill RT (1997) In: Niihara K (ed) 6th International Symposium on Ceramic Materials and Components for Engines. Arita, Japan

  37. Akimune Y, Akiba T, Ogasawara T (1995) J Mater Sci 30:1000

    Article  CAS  Google Scholar 

  38. Yoshida H, Nakashima T, Yoshida M, Hara Y, Shimamori T (1998) Proc Int Gas Turbine and Aeroengine Cong Expo, Paper # 98-GT-399

  39. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. p 420

  40. Shockey DA, Rowcliffe DJ, Dao KC, Seaman L (1990) J Am Ceram Soc 73:1613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research at University of Utah was supported by a subcontract under the DARPA-AMP Cooperative Agreement No. N00014-96-2-0014 with Sunstrand Aerospace Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh K. Shetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, GY., Lakshminarayanan, R. & Shetty, D.K. Contact damage initiation in silicon nitride in Hertzian indentation: role of microstructure. J Mater Sci 42, 3508–3519 (2007). https://doi.org/10.1007/s10853-006-0239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0239-9

Keywords

Navigation