Skip to main content
Log in

Multi-scale modeling approaches for functional nano-composite materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is the general premise of this paper that multi-scale modeling with multi-physics balance and constitutive representations of the thermal, electrochemical, mechanical, and chemical phenomena that make a fuel cell work is an essential foundation for design and manufacturing. It is further claimed that such modeling enables a systems-to-science engineering approach that will accelerate technology greatly, reduce cost, improve durability, and bring fuel cell systems to life in our society. It is the objective of this paper to identify and provide a few foundation stones of understanding for such an engineering foundation for fuel cell technology, especially that part of the foundation that relates to multi-scale modeling of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rowe A, Li X (2001) J Power Sources 102:82–96

    Article  CAS  Google Scholar 

  2. Wang ZH, Wang CY, Chen KS (2001) J Power Sources 94:40–50

    Article  CAS  Google Scholar 

  3. Springer TE, Zawodzinski TA, Gottesfeld S (1991) J Electrochem Soc 138:2334–2342

    Article  CAS  Google Scholar 

  4. Faghri A, Guo Z (2005) Intl J Heat and Mass Transfer 48:3891–3920

    Article  CAS  Google Scholar 

  5. Siegel NP, Ellis MW, Nelson DJ, and von Spakovsky MR (2003) J Power Sources 115(1):81–89

    Article  CAS  Google Scholar 

  6. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) J Electrochem Soc 40:297–302

    CAS  Google Scholar 

  7. Maharudrayya S, Jayanti S, Deshpande AP (2005) Proc FUELCELL 2005, May 23–25, Ypsilanti, MI, Paper No. 74137, ASME, 2005

  8. Ju G, Reifsnider K, Huang X, Du Y (2004) J Fuel Cell Sci Technol 1:35–42

    Article  CAS  Google Scholar 

  9. Sunde S (2000) J Electroceramics 5(2):153–182

    Article  CAS  Google Scholar 

  10. Yakabe H, Hishinuma M (2000) J Power Sources 86:423–431

    Article  CAS  Google Scholar 

  11. Neufeld PD, Janzen AR, Aziz RA (1972) J Chem Phys 57:1100

    Article  CAS  Google Scholar 

  12. Tanner CW, Funf KZ, Virkar A (1997) J Electrochem Soc 144(1):21–30

    Article  CAS  Google Scholar 

  13. Guo X, Zhang Z (2003) Acta Mater 51:2593

    Google Scholar 

  14. Xu G et al (2004) Solid State Ionics 166:391–396

    Article  CAS  Google Scholar 

  15. Chan SH, Kohr KA (2001) J Power Sources 93:130–140

    Article  CAS  Google Scholar 

  16. Bessler WG (2005) Solid State Ionics 176:997–1011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of elements of this research by the US Army (DAAB07-03-3-K415), the National Science Foundation (CMS-0408807), and the Solid State Energy Alliance (DE-FC26-04NT42228). They also gratefully acknowledge the technical assistance of Peter Menard, at the Connecticut Global Fuel Cell Center, and the use of the facilities there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Reifsnider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reifsnider, K., Huang, X., Ju, G. et al. Multi-scale modeling approaches for functional nano-composite materials. J Mater Sci 41, 6751–6759 (2006). https://doi.org/10.1007/s10853-006-0214-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0214-5

Keywords

Navigation