Skip to main content
Log in

Meso-macro approach for composites forming simulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The F.E. analysis of woven composite reinforcement forming is an alternative to geometrical draping computation. It permits to account for mechanical behaviours of the fabric and static boundary conditions of the process. In this paper, macroscopic forming simulations of woven composite reinforcements are performed using finite elements composed of woven cells, the mechanical behaviour of which are computed by F.E. analyses at mesoscale i.e. on the unit cell of the fabric. The objective is to only calculate the relevant quantities in the woven finite element. The in-plane biaxiale tensile behaviour and the in-plane shear behaviour are obtained by 3D analyses of the woven cell submitted respectively to tension and shear. They need to take the specificities of the mechanical behaviour of the yarn (made of thousand of fibres) into account. Especially an objective derivative based on the fibre rotation is used. These computations on the unit woven cell have proved to be consistent with experimental tests. An example of deep drawing of a square box using the proposed approach is presented. Angles between warp and weft directions are computed as well as wrinkles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bickerton S, Simacek P, Guglielmi SE, Advani SG (1997) Comp Part A 28:801

    Article  Google Scholar 

  2. Parnas RS (2000) Liquid composite molding. Hanser Garner publications

  3. Van Der Ween F (1991) Intl J Numer Method Eng 31:1414

    Google Scholar 

  4. Long AC, Rudd CD (1994) I Mech E J Eng Manuf 208:269

    Google Scholar 

  5. Borouchaki H, Cherouat A (2002) Revue des composites et matériaux avancés, 12/3:407

    Google Scholar 

  6. Boisse P, Daniel JL, Hivet G, Soulat D (2001) Intl J Form Proc 3(3-4):351

    Google Scholar 

  7. Boisse Ph, Cherouat A, Gelin JC, Sabhi H (1995) Polymer Comp 16(1):83

  8. De Luca P, Lefebure P, Pickett AK (1998) Comp Part A 29:101

    Article  Google Scholar 

  9. Hsiao S-W, Kikuchi N (1999) Comp Met Appl Mech Eng 177:1

    Article  Google Scholar 

  10. King MJ, Socrate S, Jearanaisilawong P (2005) Intl J Solids Struct 42:3867

    Article  Google Scholar 

  11. Durville D (2002) Finite Element Euro Revue 11(2-3-4):463

    Google Scholar 

  12. Kawabata S, Niwa M, Kawai H (1973) J Textile Inst 64:21

    Article  Google Scholar 

  13. Hivet G (2002) Modélisation mesoscopique du comportement biaxial et de la mise en forme des renforts de composites tissés, Ph.D. Thesis, University of Orléans

  14. Lomov SV, Truong Chi T, Verpoest I, Peeters T, Roose D, Boisse P, Gasser A (2003) Intl J Form Proc 6(3-4):413

    Google Scholar 

  15. Sagar TV, Potluri P, Hearle JWS (2003) Comp Mater Sci 28:49

    Article  Google Scholar 

  16. Ben Boubaker B, Haussy B, Ganghoffer JF (2002) CRAS Paris Mech Ser 330:871

    Google Scholar 

  17. Ben Boubaker B, Haussy B, Ganghoffer JF (2005) Euro J Comp Mech 14(6--7):653

    Google Scholar 

  18. Spencer AJM (2000) Comp Part A 31:1311

    Article  Google Scholar 

  19. Xue P, Peng X, Cao J (2003) Comp Part A 34:183

    Article  Google Scholar 

  20. Yu X, Ye L, Mai Y-W (2004) Proceedings of the Int. Conf ESAFORM 7, Trondheim, pp 325–328

  21. Zouari B, Daniel JL, Boisse P (2005) Comp Struct 84:351

    Google Scholar 

  22. Buet-Gautier K, Boisse P (2001) Exp Mech 41:260

    Article  Google Scholar 

  23. Dumont F (2003) Contribution à l’expérimentation et à la modélisation du comportement mécanique de renforts de composites tissés’, Ph.D. Thesis, Université Paris 6

  24. Lomov SV, Stoilova T, Verpoest I (2004) In: Proceedings of the Int. Conf ESAFORM 7, Trondheim

  25. Gasser A, Boisse P, Hanklar S (2000) Comput Mater Sci 17:7

    Article  Google Scholar 

  26. Boisse P, Gasser A, Hivet G (2001) Comp Part A 32:1395

    Article  Google Scholar 

  27. Schnur DS, Zabaras N (1992) Intl J Numer Met Eng 33:2039

    Article  Google Scholar 

  28. Gutowski TG (1985) SAMPE Quart 16(4):58

    Google Scholar 

  29. Baoxing C, Chou TW (1999) Composite Sci Tech 59:1519

    Article  Google Scholar 

  30. Hughes TJR (1987) The finite element method, Linear Static and Dynamic finite element Analysis. Prentice Hall

  31. Flanagan DP, Belytschko T (1981) Intl J Numer Met Eng 17:679

    Article  Google Scholar 

  32. Pian TH, Chen DO (1983) Intl J Numer Met Eng 19:1741

    Article  Google Scholar 

  33. Gilormini P, Roudier P, Abaqus and finite strain (1993) Internal report, LMT Cachan 140

  34. Dafalias YF (1983) Trans ASME J Ap Mech 50:561

    Google Scholar 

  35. Gilormini P, Roudier P, Rougee P (1993) Comptes-rendus à l’Académie des Sciences de Paris 316(II):1659

    Google Scholar 

  36. Dienes JK (1979) Acta Mech 32:217

    Article  Google Scholar 

  37. Crisfield MA (1991) Non linear finite element analysis of solids and structures, vol. II: Advanced topics. John Wiley & Sons, England

    Google Scholar 

  38. Hagege B (2004) Simulation du comportement mecanique des renforts fibreux en grandes transformations : application aux renforts tricotes, Ph.D. Thesis, ENSAM Paris

  39. Hagège B, Boisse P, Billoët J-L (2005) Euro J Comp Mech 14(6--7):767

    Google Scholar 

  40. Mcbride TM, Chen J (1997) Comp Sci Technol 57:345

    Article  Google Scholar 

  41. Mcguinness GB, O’Bradaigh CMO (1998) Comp Part A 29(1–2):115

    Article  Google Scholar 

  42. Numisheet ’93 (1993) In: Makinouchi A, Nakamachi E, Onate E, Wagoner, RH (eds) Numerical simulation of 3-D sheet metal forming processes—Verification of simulation with experiments, Japan

Download references

Acknowledgements

The author acknowledge the support provided by the EADS aeronautical company and the researchers of his former laboratory: the LMSP Paris-Orléans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisse, P. Meso-macro approach for composites forming simulation. J Mater Sci 41, 6591–6598 (2006). https://doi.org/10.1007/s10853-006-0198-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0198-1

Keywords

Navigation