Skip to main content
Log in

Faceting of the Σ 3 coincidence tilt boundary in Nb

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to their unusual properties, the grain boundaries (GBs) with the lowest possible inverse density of coincidence sites Σ = 3 play a special role in the GB engineering. The as-grown shape of the cylindric tilt grain boundary (GB) in Nb bicrystal grown by the floating zone method has been studied with the electron back-scattering diffraction method. Both grains form the superlattice called coincidence site lattice (CSL) with the lowest possible inverse density of coincidence sites Σ = 3. Four different CSL facets (100)Σ3CSL, 110Σ 3CSL, 120Σ 3CSL and 210Σ3CSL were observed simultaneously. Flat facets (100)Σ3CSL, 110Σ3CSL, 120Σ3CSL and 210Σ3CSL form smooth edges (no slope discontinuity) with rounded rough GB portions. Rough surface curves away from the plane of the (–1, 2, 0)Σ3CSL facet at the edge with (–1, 1, 0)Σ3CSL facet as xβ with β = 1.61 ± 0.09. At the edge between (210)Σ3CSL and (–1, 2, 0)Σ3CSL facets β = 1.46 ± 0.09. Both values reveal the GB roughening belonging to the Pokrovsky-Talapov universality class. It has been shown for Pb surfaces [K. Arenhold, S. Surnev, P. Coenen, H.P. Bonzel and P. Wynblatt, Surf. Sci. 417 (1998) L1160] that the β value depend on the details of the steps interaction at the vicinal surface. In our case the difference between measured β for two different facet edges can be due to the similar details of GB steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Paik, Y. J. Park, M. S. Yoon, J. H. Lee and Y. C. Joo, Scripta Mater. 48 (2003) 683.

    Article  Google Scholar 

  2. J. S. Choi and D. Y. Yoon, ISIJ Internat. 41 (2001) 478.

    Google Scholar 

  3. J. B. Koo and D. Y. Yoon, Metal. Mater. Trans. A 32 (2001) 469.

    Google Scholar 

  4. S. B. Lee, D. Y. Yoon and M. F. Henry, Acta Mater. 48 (2000) 3071.

    Article  Google Scholar 

  5. T. E. Hsieh and R. W. Balluffi, Acta Metall. 37 (1989) 2133.

    Article  Google Scholar 

  6. B. B. Straumal and L. S. Shvindlerman, Acta Metall. 33 (1985) 1735.

    Article  Google Scholar 

  7. K. Harada, S. Tsurekawa, T. Watanabe and G. Palumbo, Scripta Mater. 49 (2003) 367.

    Google Scholar 

  8. L. C. Lim and R. Raj, Acta Metal. 32 (1984) 1177.

    Article  Google Scholar 

  9. T. Watanabe, Y. Suzuki, S. Tanii and H. Oikawa, Philos. Mag. Lett. 9 (1990) 62.

    Google Scholar 

  10. T. Watanabe, K.-I. Arai, H. Terashima and H. Oikawa, Solid State Phenom. 37–38 (1994) 317.

    Google Scholar 

  11. V. Randle, Acta Mater. 47 (1999) 4187.

    Article  Google Scholar 

  12. J. K. Mackenzie, Biometrika 45 (1958) 229.

    Google Scholar 

  13. J. B. Koo, D. Y. Yoon and M. F. Henry, Metal. Mater. Trans. A 33 (2002) 3803.

    Google Scholar 

  14. D. C. Crawford and G. S. Was, Met. Trans. A 23 (1992) 1195.

    Google Scholar 

  15. M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato and I. Karibe, Acta Mater. 50 (2002) 2331.

    Article  Google Scholar 

  16. E. M. Lehockey, G. Palumbo and P. Lin, Metal. Mater. Trans. A 29 (1998) 3069.

    Google Scholar 

  17. D. Horton, C. B. Thompson and V. Randle, Mater. Sci. Eng. A 203 (1995) 408.

    Article  Google Scholar 

  18. M. Kumar, A. J. Schwarz and W. E. King, Acta Mater. 50 (2002) 2599.

    Google Scholar 

  19. T. Schober and D. H. Warrington, Phys. Stat. Sol. (a) 6 (1971) 103.

    Google Scholar 

  20. G. Dhalenne, M. Dechamps and A. Revcolevschi, J. Am. Ceram. 65 (1982) C11.

    Google Scholar 

  21. D. J. Dingley and R. C. Pond, Acta Metall. 27 (1979) 667.

    Article  Google Scholar 

  22. G. Hasson and C. Goux, Scripta Metall. 5 (1971) 889.

    Article  Google Scholar 

  23. J. W. Matthews, Scripta Metall. 11 (1977) 233.

    Article  Google Scholar 

  24. A. Otsuki and M. Mitsuno, Trans. Jap. Inst. Met. Suppl. 27 (1986) 789.

    Google Scholar 

  25. T. Schober and R. W. Balluffi, Phil. Mag. A 21 (1970) 109.

    Google Scholar 

  26. C. Rottman, M. Wortis, J. C. Heyraud and J. J. Métois, Phys. Rev. Lett. 52 (1984) 1009.

    Google Scholar 

  27. S. Surnev, K. Arenhold, P. Coenen, B. Voigtlander, H. P. Bonzel and P. Wynblatt, J. Vac. Sci. Technol. A 16 (1998) 1059.

    Google Scholar 

  28. K. Arenhold, S. Surnev, P. Coenen, H. P. Bonzel and P. Wynblatt, Surf. Sci. 417 (1998) L1160.

    Google Scholar 

  29. K. Arenhold, S. Surnev, H. P. Bonzel and P. Wynblatt, Surf. Sci. 424 (1999) 271.

    Article  Google Scholar 

  30. H. P. Bonzel and A. Emundts, Phys. Rev. Lett. 84 (2000) 5804.

    Article  PubMed  Google Scholar 

  31. V. G. Glebovsky, V. V. Lomeyko and V. N. Semenov, J. Less-Common Metals 117 (1986) 385.

    Article  Google Scholar 

  32. V. N. Semenov, B. B. Straumal, V. G. Glebovsky and W. Gust, J. Crystal Growth 151 (1995) 180.

    Article  Google Scholar 

  33. U. Wolf, F. Ernst, T. Muschik, M. W. Finnis and H. F. Fischmeister, Phil. Mag. A 66 (1992) 991.

    Google Scholar 

  34. B. B. Straumal, S. A. Polyakov, E. Bischoff, W. Gust and E. J. Mittemeijer, Interface Sci. 9 (2001) 287.

    Article  Google Scholar 

  35. A. Barg, E. Rabkin and W. Gust, Acta Metall. Mater. 43 (1995) 4067.

    Article  Google Scholar 

  36. S. B. Lee, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 34 (2003) 1433.

    Google Scholar 

  37. G. D. Sukhomlin and A. V. Andreeva, Phys. Stat. Sol. (a), 78 (1983) 333.

    Google Scholar 

  38. Z.-J. Wang, S. Tsurekawa, K. Ikeda, T. Sekiguchi and T. Watanabe, Interface Sci. 7 (1999) 197.

    Article  Google Scholar 

  39. Y. Carmi, S. G. Lipson and E. Polturak, Phys. Rev. B 36 (1987) 1894.

    Article  Google Scholar 

  40. A. F. Andreev, Sov. Phys. JETP 53 (1981) 1063.

    Google Scholar 

  41. V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42 (1979) 65.

    Article  Google Scholar 

  42. C. Rottman and M. Wortis, Phys. Rep. 103 (1984) 59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B.B., Semenov, V.N., Khruzhcheva, A.S. et al. Faceting of the Σ 3 coincidence tilt boundary in Nb. J Mater Sci 40, 871–874 (2005). https://doi.org/10.1007/s10853-005-6503-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6503-6

Keywords

Navigation