Skip to main content
Log in

Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We review the most interesting aspects of the domain structure kinetics in ferroelectrics important for “domain engineering” and discuss them in the framework of a unified nucleation approach. In our approach the nucleation rate is determined by the local value of electric field produced not only by bound charges and voltage applied to the electrodes, but also by screening charges. As a result, any kinetically produced domain pattern, even being far from the equilibrium, can be stabilized by bulk screening. The domain evolution represents a self-organizing process in which the screening of polarization plays the role of feedback. The general approach was applied for the description of the domain kinetics in lithium niobate and lithium tantalate as the most versatile materials for applications. The revealed original scenarios of the domain structure evolution are attributed to the retardation of the screening processes. The decisive role of screening effectiveness for shapes of individual domains and scenarios of the sideways domain wall motion is demonstrated both experimentally and by computer simulation. The possibility to produce a self-assembled nano-scale domain structures with controlled periods has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. BYER, J. Nonlinear Opt. Phys. & Mater. 6 (1997) 549.

    Article  CAS  Google Scholar 

  2. L. E. MYERS, R. C. ECKHARDT, M. M. FEJER, R. L. BYER, W. R. BOSENBERG and J. W. PIERCE, J. Opt. Soc. Am. B 12 (1995) 2102.

    Google Scholar 

  3. G. W. ROSS, M. POLLNAU, P. G. R. SMITH, W. A. CLARKSON, P. E. BRITTON and D. C. HANNA, Opt. Lett. 23 (1998) 171.

    CAS  Google Scholar 

  4. N. G. R. BRODERICK, G. W. ROSS, H. L. OFFERHAUS, D. J. RICHARDSON and D. C. HANNA, Phys. Rev. Lett. 84 (2000) 4345.

    Article  CAS  Google Scholar 

  5. M. YAMADA, N. NADA, M. SAITOH and K. WATANABE, Appl. Phys. Lett. 62 (1993) 435.

    Article  CAS  Google Scholar 

  6. V. YA. SHUR and E. L. RUMYANTSEV, Ferroelectrics 191 (1997) 319.

    CAS  Google Scholar 

  7. V. YA SHUR, Phase Transitions 65 (1998) 49.

    CAS  Google Scholar 

  8. V. YA. SHUR, in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by C. A. Paz de Araujo, J. F. Scott and G. W. Taylor (Gordon and Breach, New York, 1996) p. 153.

  9. E. FATUZZO and W. J. MERZ, “Ferroelectricity” (North-Holland Publishing Company, Amsterdam, 1967).

  10. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, G. D. MILLER, M. M. FEJER and R. L. BYER, Ferroelectrics 236 (2000) 129.

    CAS  Google Scholar 

  11. M. E. LINES and A. M. GLASS, “Principles and Application of Ferroelectrics and Related Materials” (Clarendon Press, Oxford, 1977).

    Google Scholar 

  12. R. C. MILLER, J. Phys. Chem. Solids 17 (1960) 93.

    Article  CAS  Google Scholar 

  13. V. YA. SHUR, E. L. RUMYANTSEV, D. V. PELEGOV, V. L. KOZHEVNIKOV, E. V. NIKOLAEVA, E. I. SHISHKIN, A. P. CHERNYKH and R. K. IVANOV, Ferroelectrics 267 (2002) 347.

    Article  CAS  Google Scholar 

  14. M. VOLMER, “Kinetik der Phasenbildung” (Steinkopff, Dresden-Leipzig, 1939).

    Google Scholar 

  15. YA. B. ZELDOVICH, Zh. Eksp. Theor. Fiz. 12 (1942) 525 (in Russian).

    CAS  Google Scholar 

  16. J. W. P. Schmelzer (ed.) Nucleation Theory and Applications, (Wiley-VCH, Weinheim, 2005).

  17. A. N. KOLMOGOROV, Izv. Acad. Nauk USSR., Ser. Math. 3 (1937) 355 (in Russian).

    Google Scholar 

  18. M. AVRAMI, J. Chem. Phys. 7 (1939) 1103.

    Article  CAS  Google Scholar 

  19. Y. ISHIBASHI and Y. TAKAGI, J. Phys. Soc. Jap. 31 (1971) 506.

    Article  CAS  Google Scholar 

  20. V. M. FRIDKIN, “Ferroelectrics Semiconductors” (Consult. Bureau, New York and London, 1980).

    Google Scholar 

  21. P. V. LAMBECK and G. H. JONKER, J. Phys. Chem. Solids 47 (1986) 453.

    Article  CAS  Google Scholar 

  22. A. K. TAGANTSEV, I. STOLICHNOV, E. L. COLLA and N. SETTER, J. Appl. Phys. 90 (2001) 1387.

    Article  CAS  Google Scholar 

  23. V. YA. SHUR, in Nucleation Theory and Applications, edited by J. W. P. Schmelzer (Wiley-VCH, Weinheim, 2005) p. 178.

  24. Y. FURUKAWA, K. KITAMURA, S. TAKEKAWA, K. NIWA and H. HATANO, Opt. Lett. 23 (1998) 1892.

    CAS  Google Scholar 

  25. V. GOPALAN, N. A. SANFORD, J. A. AUST, K. KITAMURA and Y. FURUKAWA, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001) Ch. 2, p. 57.

  26. K. KITAMURA, Y. FURUKAWA, K. NIWA, V. GOPALAN and T. MITCHELL, Appl. Phys. Lett. 73 (1998) 3073.

    Article  CAS  Google Scholar 

  27. K. NIWA, Y. FURUKAWA, S. TAKEKAWA and K. KITAMURA, J. Crystal Growth 208 (2000) 493.

    Article  CAS  Google Scholar 

  28. L. HUANG, D. HUI, D. J. BAMFORD, S. J. FIELD, I. MNUSHKINA, L. E. MYERS and J. V. KAYSER, Appl. Phys. B 72 (2001) 301.

    Google Scholar 

  29. V. GOPALAN, Q. JIA and T. MITCHELL, Appl. Phys. Lett. 75 (1999) 2482.

    Article  CAS  Google Scholar 

  30. M. MULLER, E. SOERGEL and K. BUSE, Opt. Lett. 28 (2003) 2515.

    Google Scholar 

  31. A. GRUVERMAN, O. KOLOSOV, J. HATANO, K. TAKAHASHI and H. TOKUMOTO, J. Vac. Sci. Technol. B 13 (1995) 1095.

    Google Scholar 

  32. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, M. M. FEJER, R. L. BYER and I. MNUSHKINA, Ferroelectrics 269 (2002) 189.

    Article  CAS  Google Scholar 

  33. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, M. M. FEJER and R. L. BYER, ibid. 257 (2001) 191.

    CAS  Google Scholar 

  34. M. E. DROUGARD and R. LANDAUER, J. Appl. Phys. 30 (1959) 1663.

    Article  CAS  Google Scholar 

  35. V. YA. SHUR, A. L. GRUVERMAN, V. V. LETUCHEV, E. L. RUMYANTSEV and A. L. SUBBOTIN, Ferroelectrics 98 (1989) 29.

    CAS  Google Scholar 

  36. V. YA. SHUR, E. L. RUMYANTSEV, V. P. KUMINOV, A. L. SUBBOTIN and E.V. NIKOLAEVA, Phys. Solid State 41 (1999) 112.

    Article  CAS  Google Scholar 

  37. G. ROSENMAN, A. SKLIAR and A. ARIE, Ferroelectrics Review 1 (1999) 263.

    CAS  Google Scholar 

  38. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, G. D. MILLER, M. M. FEJER and R. L. BYER, SPIE Proceedings on Smart Structures and Materials 3992 (2000) 143.

    CAS  Google Scholar 

  39. V. SHUR, E. RUMYANTSEV, R. BATCHKO, G. MILLER, M. FEJER and R. BYER, Ferroelectrics 221 (1999) 157.

    CAS  Google Scholar 

  40. V. GOPALAN and T. MITCHELL, J. Appl. Phys. 85 (1999) 2304.

    Article  CAS  Google Scholar 

  41. A. P. CHERNYKH, V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, A. G. SHUR, K. TERABE, S. KURIMURA, K. KITAMURA and K. GALLO, Material Science & Engineering B 120 (2005) 109.

  42. V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, A. P. CHERNYKH, K. TERABE, K. KITAMURA, H. ITO and K. NAKAMURA, Ferroelectrics 269 (2002) 195.

    Article  CAS  Google Scholar 

  43. V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, V. L. KOZHEVNIKOV, A. P. CHERNYKH, K. TERABE and K. KITAMURA, Appl. Phys. Lett. 79 (2001) 3146.

    Article  CAS  Google Scholar 

  44. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, D. V. FURSOV, R. G. BATCHKO, L. A. EYRES, M. M. FEJER and R. L. BYER, ibid. 76 (2000) 143.

    Article  CAS  Google Scholar 

  45. R. G. BATCHKO, V. Y. SHUR, M. M. FEJER and R. L. BYER, ibid. 75 (1999) 1673.

    Article  CAS  Google Scholar 

  46. V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, D. V. FURSOV, R. G. BATCHKO, L. A. EYRES, M. M. FEJER, R. L. BYER and J. SINDEL, Ferroelectrics 253 (2001) 105.

    CAS  Google Scholar 

  47. V. YA. SHUR, A. L. GRUVERMAN, N. YU. PONOMAREV, and N. A. TONKACHYOVA, ibid. 126 (1992) 371.

    CAS  Google Scholar 

  48. V. YA. SHUR, A. L. GRUVERMAN, N. YU. PONOMAREV, E. L. RUMYANTSEV and N. A. TONKACHYOVA, Integrated Ferroelectrics 2 (1992) 51.

    CAS  Google Scholar 

  49. V. YA. SHUR, E. V. NIKOLAEVA and E. I. SHISHKIN, Physics of Low-Dimensional Structures 3/4 (2003) 139.

    Google Scholar 

  50. R. C. MILLER and A. SAVAGE, Phys. Rev. 115 (1959) 1176.

    Article  CAS  Google Scholar 

  51. J. HATANO, F. SUDA and H. FUTAMA, J. Phys. Soc. Jap. 45 (1978) 244.

    Article  Google Scholar 

  52. V. YA. SHUR, V. V. LETUCHEV and E. L. RUMYANTSEV, Sov. Phys. Solid State 26 (1984) 1521.

    Google Scholar 

  53. V. YA. SHUR, V. V. LETUCHEV, E. L. RUMYANTSEV and I. V. OVECHKINA, ibid. 27 (1985) 959.

    Google Scholar 

  54. R. BATCHKO, G. MILLER, R. BYER, V. SHUR and M. FEJER, United States Patent No. 6, 542,285 B1, April 1, 2003.

  55. R. G. BATCHKO, M. M. FEJER, R. L. BYER, D. WOLL, R. WALLENSTEIN, V. YA. SHUR and L. ERMAN, Optics Letters 24/18 (1999) 1293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ya. Shur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, V.Y. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 . J Mater Sci 41, 199–210 (2006). https://doi.org/10.1007/s10853-005-6065-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6065-7

Keywords

Navigation