Skip to main content
Log in

Properties of ferroelectric ultrathin films from first principles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advances in first-principles computational approaches have, over the past ten years, made possible the investigation of basic physical properties of simple ferroelectric systems. Recently, first-principles techniques also proved to be powerful methods for predicting finite-temperature properties of solid solutions in great details. Consequently, bulk perovskites are rather well understood nowadays. On the other hand, one task still remains to be accomplished by ab-initio methods, that is, an accurate description and a deep understanding of ferroelectric nanostructures. Despite the fact that nanometer scale ferroelectric materials have gained widespread interest both technologically and scientifically (partly because of novel effects arising in connection with the reduction of their spatial extension), first-principles-based calculations on ferroelectric nanostructures are rather scarce. For instance, the precise effects of the substrate, growth orientation, surface termination, boundary conditions and thickness on the finite-temperature ferroelectric properties of ultrathin films are not well established, since their full understandings require (i) microscopic insights on nanoscale behavior that are quite difficult to access and analyze via experimental probes, and (ii) the development of new computational schemes. One may also wonder how some striking features exhibited by some bulk materials evolve in the corresponding thin films. A typical example of such feature is the morphotropic phase boundary of various solid solutions, where unusual low-symmetry phases associated with a composition-induced rotation of the spontaneous polarization and an enhancement of dielectric and piezoelectric responses were recently discovered. In this paper, recent findings resulting from the development and use of numerical first-principles-based tools on ferroelectric ultrathin films are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. RAMESH, S. AGGARWAL and O. AUCIELLO, Mat. Sc. Eng. 32 (2001) 191.

  2. N. SETTER (Ed.), in “Piezoelectric materials in devices: extended reviews on current and emerging piezoelectric materials, technology, and applications” (EPFL Swiss Federal Institute of Technology, 2002).

  3. J. SCOTT, in “Ferroelectric memories” (Springer Verlag, Berlin, 2000).

  4. K. UCHINO, in “Piezoelectric Actuators and Ultrasonic Motors” (Kluwer Academic Publishers, Boston, 1996).

  5. S.-E. PARK and T. R. SHROUT, J. Appl. Phys. 82 (1997) 1804.

  6. R. F. SERVICE, Science 275 (1997) 1878.

  7. B. NOHEDA, Appl. Phys. Lett. 74 (1999) 2059.

  8. L. BELLAICHE, A. GARCIA and D. VANDERBILT, Phys. Rev. Lett. 84 (2000) 5427.

  9. L. BELLAICHE, A. GARCIA and D. VANDERBILT, Ferroelectrics 266, 41 (2002).

    Google Scholar 

  10. B. NOHEDA, Current Opinion in Solid State and Materials Science 6 (2002) 27.

  11. H. FU and R. E. COHEN, Nature 403 (2000) 281.

  12. I. GRINBERG, V. R. COOPER and A. M. RAPPE, Nature 419 (2002) 909.

  13. Z. WU and H. KRAKAUER, Phys. Rev. B 68 (2003) 014112.

  14. A. OHTOMO, D. A. MULLER, J. L. GRAZUL and H. Y. HWANG, Nature 419 (2002) 378.

  15. D. WOLPERT, K. KOROLEV, S. SACHS, J. KNAB, W. COX, J. CERNE, A. G. MARKELZ, T. ZHAO, R. RAMESH and B. H. MOECKLY, Physica E: Low-dimensional Systems and Nanostructures 19 (2003) 236.

  16. E. D. MISHINA, V. I. STADNICHUK, A. S. SIGOV, Y. I. GOLOVKO, V. M. MUKHOROTOV, S. NAKABAYASHI, H. MASUDA, D. HASHIZUME and A. NAKAO, Physica E: Low-dimensional Systems and Nanostructures 25 (2004) 35.

  17. D. G. SCHLOM, J. H. HAENI, J. LETTIERI, C. D. THEIS, W. TIAN, J. C. JIANG and X. Q. PAN, Materials Science and Engineering B 87 (2001) 282.

  18. A. LIN, X. HONG, V. WOOD, A. A. VEREVKIN, C. H. AHN, R. A. MCKEE, F. J. WALKER and E. D. SPECHT, Applied Physics Letters 78 (2001) 2034.

  19. Y. WANG, C. GANPULE, B. T. LIU, H. LI, K. MORI, B. HILL, M. WUTTIG, R. RAMESH, J. FINDER, Z. YU, et al. Appl. Phys. Lett. 80 (2002) 97.

  20. K. EISENBEISER, J. M. FINDER, Z. YU, J. RAMDANI, J. A. CURLESS, J. A. HALLMARK, R. DROOPAD, W. J. OOMS, L. SALEM, and S. BRADSHAW, et al., Appl. Phys. Lett. 76 (2000) 1324.

  21. O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.

  22. J. F. SCOTT, Ann. Rev. Mat. Sci. 28 (1998) 79.

  23. M. E. LINES and A. M. GLASS, “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon Press, 1977).

  24. T. TYBELL, C. H. AHN and J.-M. TRISCONE, Appl. Phys. Lett. 75 (1999) 856.

    Google Scholar 

  25. A. V. BUNE, V. M. FRIDKIN, S. DUCHARME, L. M. BLINOV, S. P. PALTO, A. V. SOROKIN, S. G. YUDIN and A. ZLATKIN, Nature 391 (1998) 874.

    Google Scholar 

  26. D. D. FONG, G. B. STEPHENSON, S. K. STREIFFER, J. A. EASTMAN, O. AUCIELLO, P. H. FUOSS and C. THOMPSON, Science 304 (2004) 1650.

  27. P. GHOSEZ and K. M. RABE, Appl. Phys. Lett. 76 (2000) 2767.

  28. J. JUNQUERA AND P. GHOSEZ, Nature 422 (2003) 506.

  29. S. TINTE AND M. G. STACHIOTTI, Phys. Rev. B 64 (2001) 235403.

    Google Scholar 

  30. H. FU and L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 257601.

  31. B. MEYER and D. VANDERBILT, Phys. Rev. B 63 (2001) 205426.

  32. B. MEYER, J. PADILLA and D. VANDERBILT, Faraday Discussions 114 (1999) 395.

  33. R. E. COHEN, J. Phys. Chem. Sol. 57 (1996) 1393.

    Google Scholar 

  34. R. COHEN, Ferroelectrics 194 (1997) 323.

    Google Scholar 

  35. L. FU, E. YASCHENKO, L. RESCA and R. RESTA, Phys. Rev. B 60 (1999) 2697.

    Google Scholar 

  36. S. K. STREIFFER, J. A. EASTMAN, D. D. FONG, C. THOMPSON, A. MUNKHOLM, M. V. R. MURTY, O. AUCIELLO, G. R. BAI and G. B. STEPHENSON, Phys. Rev. Lett. 89 (2002) 067601.

  37. A. KOPAL, T. BAHNIK and J. FOUSEK, Ferroelectrics 202 (1997) 267.

  38. Y. L. LI, S. Y. HU, Z. K. LIU and L. Q. CHEN, Appl. Phys. Lett. 81 (2002) 427.

  39. R. R. MEHTA, B. D. SILVERMAN and J. T. JACOBS, J. Appl. Phys. 44 (1973) 3379.

    Google Scholar 

  40. J. JUNQUERA, O. DIEGUEZ, K. M. RABE, P. GHOSEZ, C. LICHTENSTEIGER and J.-M. TRISCONE, in “Fundamental Physics of Ferroelectrics” (NISTIR, Gaitherburg. Colonial Williamsburg, VA, 2004), pp. 86–87.

  41. I. A. KORNEV AND L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 116103.

  42. L. D. LANDAU and E. M. LIFSCHITZ, in “Electrodynamics of Continuous Media.” (Pergamon Press, 1984).

  43. M. D. GLINCHUK, E. A. ELISEEV, V. A. STEPHANOVICH and R. FARHI, J. Appl. Phys. 93 (2003) 1150.

    Google Scholar 

  44. V. ZHIRNOV, Sov. Phys. JETP 35 (1958) 1175.

  45. N. A. PERTSEV, V. G. KUKHAR, H. KOHLSTEDT and R. WASER, Phys. Rev. B 67 (2003) 054107.

  46. M. G. COTTAM, D. R. TILLEY and B. ZEKS, J. Phys. C: Solid St. Phys. 17 (1984) 1793.

    Google Scholar 

  47. Y. WANG, W. ZHONG and P. ZHANG, Phys. Rev. B 53 (1996) 11439.

  48. A. M. GEORGE, J. INIGUEZ and L. BELLAICHE, Nature 413 (2001) 54.

  49. W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. Lett. 73 (1994) 1861.

  50. W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. B 52 (1995) 6301.

  51. I. A. KORNEV and L. BELLAICHE, Phys. Rev. Lett. 89 (2002) 115502.

  52. A. AL-BARAKATY and L. BELLAICHE, Appl. Phys. Lett. 81 (2002) 2442.

  53. K. RABE and P. GHOSEZ, Journal of Electroceramics 4 (2000) 379.

  54. R. KRETSCHMER and K. BINDER, Phys. Rev. B 20 (1979) 1065.

  55. B. MEYER and D. VANDERBILT, Phys. Rev. B 65 (2002) 104111.

  56. J. M. SOLER, E. ARTACHO, J. D. GALE, A. GARCíA, J. JUNQUERA, P. ORDEJóN and D. SáNCHEZ-PORTAL, J. Phys.: Cond. Matter 14 (2002) 2745.

    Google Scholar 

  57. O. DIEGUEZ, S. TINTE, A. ANTONS, C. BUNGARO, J. B. NEATON, K. M. RABE and D. VANDERBILT, Phys. Rev. B 69 (2004) 212101.

  58. N. PERTSEV, A. ZEMBILGOTOV and A. TAGANTSEV, Phys. Rev. Lett. 80 (1998) 1988.

  59. G. KRESSE and J. FURTHMULLER, Phys. Rev. B 54 (1996) 11169.

  60. G. KRESSE and J. HAFNER, Phys. Rev. B 47 (1993) 558.

  61. I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. Lett. 93 (2004) 196104.

    Google Scholar 

  62. L. HE and D. VANDERBILT, Phys. Rev. B 68 (2003) 134103.

  63. Z. WU, N. HUANG, Z. LIU, J. WU, W. DUAN, B.-L. GU and X.-W. ZHANG, Phys. Rev. B 70 (2004) 104108.

  64. E. ALMAHMOUD, Y. NAVTSENYA, I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. B 70 (2004) 220102(R).

  65. I. NAUMOV, L. BELLAICHE and H. FU, Nature (London) 432 (2004) 737.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Kornev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornev, I.A., Fu, H. & Bellaiche, L. Properties of ferroelectric ultrathin films from first principles. J Mater Sci 41, 137–145 (2006). https://doi.org/10.1007/s10853-005-5962-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5962-0

Keywords

Navigation