Skip to main content
Log in

Finite element modelling of rubber-like materials — a comparison between simulation and experiment

  • Mechanical Behavior of Cellular Solids
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work finite element simulations are used based on the micro structure of polymers in order to transfer the information of the micro level to the macro level. The microscopic structure of polymers is characterized by a three-dimensional network consisting of randomly oriented chain-like macromolecules linked together at certain points. Different techniques are used to simulate the rubber-like material behaviour of such networks. These techniques range from molecular dynamics to the finite element method.The proposed approach is based on a so-called unit cell. This unit cell consists of one tetrahedral element and six truss elements. To each edge of the tetrahedron one truss element is attached which models the force-stretch behaviour of a bundle of polymer chains. The proposed method provides the possibility to observe how changes at the microscopic level influence the macroscopic material behaviour. Such observations were carried out in [1]. The main focus of this work is the validation of the proposed approach. Therefore the model is compared to different experimental data and other statistically-based network models describing rubber-like material behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Böl and S. Reese, Intern. J. Solids Struct.

  2. R. J. Gaylord, Poly. Engng. Sci. 19(4) (1979) 263.

    Google Scholar 

  3. J. Gao and J. H. Weiner, Macromolecules 24(18) (1991) 5179.

  4. A. S. Lodge, An Introduction to Elastomer Molecular Network Theory (The Bannatek Press, Madison).

  5. M. Wittkop, J. U. Sommer, S. Kreitmeier and D. Göritz, Phy. Rev. E 49(6) (1994) 5472.

  6. T. Hölzl, H. L. Trautenberg and D. Göritz, Phys. Rev. Lett. 79(12) (1997) 2293.

    Google Scholar 

  7. M. Lang, D. Göritz and S. Kreitmeier, Constitutive Models for Rubber III, edited by J. J. C. Busfield and A. H. Muhr (2003) p. 195.

  8. W. Kuhn, Kolloid-Zeitschrift 76(3) (1936) 258.

  9. F. T. Wall, J. Chem. Phys. 10 (1942) 485.

    Google Scholar 

  10. P. J. Flory, and B. Erman, Macromolecules 15(3) (1982) 800.

  11. P. J. Flory and J. Rehner, J. Chem. Phys. 11(11) (1943) 512.

  12. L. R. G. Treloar, Trans. Fara. Soc. 39(1943) 36.

    Google Scholar 

  13. L. R. G. Treloar, ibid. 39 (1943) 241.

  14. E. M. Arruda and M. C. Boyce, J. Mech. Phys. Solids 41(2) (1993) 389.

    Google Scholar 

  15. J. E. Bischoff, E. A. Arruda and K. Grosh, J. Appl. Mech. 69 (2002) 570.

    Google Scholar 

  16. P. D. Wu and E. van der Giessen, J. Mech. Phys. Solids 41(3) (1993) 427.

    Google Scholar 

  17. L. Anand, Comp. Mech. 18 (1996) 339.

    Google Scholar 

  18. W. Kuhn and F. Grün, Kolloid-Zeitschrift 101(3) (1942) 248.

  19. M. Mooney, J. Appl. Phys. 11 (1940) 582.

    Google Scholar 

  20. R. S. Rivlin, Philosop. Trans. Royal Soc. London A240 (1948) 459.

    Google Scholar 

  21. R. W. Ogden, Proc. Royal Soc. London A 326 (1972) 565.

  22. S. R. Swanson, J. Engng. Mater. Technol. 107 (1985) 110.

    Google Scholar 

  23. M. C. Wang and E. Guth, J. Chem. Phys. 20(7) (1952) 1144.

  24. S. Reese and M. Böl, Constitutive Models for Rubber III, J. J. C. Busfield and A. H. Muhr (2003) 213.

  25. L. R. G. Treloar, Trans. Fara. Soc. 40 (1944) 59.

    Google Scholar 

  26. R. W. Ogden, Proc. Royal Soc. London A 328 (1972) 567.

  27. J. C. Simo, Handbook of Numerical Anylysis, vol. III, edited by R. S. Ciarlet and J. L. Lions, Elsevier, Amsterdam.

  28. C. Miehe, S. Göktepe and F. Lulei, J. Mech. Phys. Solids 52 (2004) 2617.

  29. P. Wriggers, Nichtlineare Finite-Element-Methoden (Springer, 2001).

  30. O. L. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. I: The Basis (Butterworth-Heinemann).

  31. L. R. G. Treloar, Trans. Fara. Soc. 42 (1946) 83.

    Google Scholar 

  32. L. R. G. Treloar, ibid. 50 (1954) 881.

  33. P. D. Wu and E. van der Giessen, Mech. Res. Commun. 19(5) (1992) 427.

  34. P. D. Wu and E. van der Giessen, Philosop. Magazine A 71(5) (1995) 1191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Böl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böl, M., Reese, S. Finite element modelling of rubber-like materials — a comparison between simulation and experiment. J Mater Sci 40, 5933–5939 (2005). https://doi.org/10.1007/s10853-005-5058-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5058-x

Keywords

Navigation