Skip to main content
Log in

Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method

  • Mechanical Behavior of Cellular Solids
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The quality of thermosetting polymer foams (like polyurethane foam, used for example in automotive industry) mainly depends on the manufacturing process. At a mesoscopic scale, the foam can be modelled by the expansion of gas bubbles in a polymer matrix with evolutionary rheological behaviour. The initial bubbles correspond to germs, which are supposed quasi-homogeneously distributed in the polymer. An elementary foam volume (∼1 mm3) is phenomenologically modelled by a diphasic medium (polymer and immiscible gas bubbles). The evolution of each component is governed by equations resulting from thermodynamics of irreversible processes: the relevant state variables in gas, resulting from chemical reaction creating carbon dioxide (assimilated then to a perfect gas), are pressure, temperature and conversion rate of the reaction. The number of gas moles in each bubble depends on this conversion rate. The foam is considered as a shear-thinning viscous fluid, whose rheological parameters evolve with the curing reaction, depending on the process conditions (temperature, pressure). A mixed finite element method with multidomain approach is developed to simulate the average growth rate of the foam during its manufacture and to characterize the influence of the manufacturing conditions (or initial rheological behaviour of the components) on macroscopic parameters of the foam (cell size, heterogeneity of porosity, wall thickness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lefebvre and R. Keunings, Mathematical Modelling and Computer Simulation of the Flow of Chemically-Reacting Polymeric Foams, in “Mathematical Modelling for Materials Processing,” edited by M. Cross, J. F. T. Pittman, R. D. Wood, (Clarendon Press, Oxford, 1993) p 417.

    Google Scholar 

  2. G. Oertel, in “Polyurethane Handbook” (Hanser Publishers, Munich, 1985).

    Google Scholar 

  3. D. Weaire and S. Hutzler, “The Physics of Foams” (Oxford University Press, Oxford, 1999).

    Google Scholar 

  4. E. Mora, L. D. Artavia and C. W. Macosko, Modulus development during reactive polyurethane foaming, J. Rheol. 35 (1991) 921.

    Article  Google Scholar 

  5. S. L. Everitt, O. G. Harlen, H. J. Wilson and D. J. Read, Bubble dynamics in viscoelastic fluids with application to reacting and non-reacting polymer foams, J. Non Newt. Fluid Mech. 114 (2003) 83.

    Article  Google Scholar 

  6. P. Perzyna, Fundamental problems in viscoelasticity, Adv Appl. Mech. 9 (1966) 243.

    Google Scholar 

  7. M. Amon and D. C. Denson, A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles, Polym. Eng. Sci. 24 (1984) 1026.

    Article  Google Scholar 

  8. M. I. Aranguren and R. J. J. Williams, Kinetic and statistical aspects of the formation of polyurethanes from toluene diisocyanate, Polymer 27 (1986) 425.

    Article  Google Scholar 

  9. J. Bikard, T. Coupez and B. Vergnes, Modèlisation numérique multidomaines de l’expansion réactive d’une mousse polymère par création de gaz, Actes du 38ème Colloque du Groupe Français de Rhéologie, CD ROM (2003), Brest, France.

  10. G. O. Piloyan, I. D. Ryabchikov and O. S. Novikora, Determination of activation energies of chemical reactions by differential thermal analysis, Nature, 5067 (1966) 1229.

    Google Scholar 

  11. R. B. Kellog and B. Liu, A finite element method for the compressible Navier-Stokes equations. SIAM J. Num. Anal., 33 (1996) 788.

    Google Scholar 

  12. D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for Stokes equations. Calcolo 21 (1984) 344.

    Google Scholar 

  13. S. Batkam, J. Bruchon and T. Coupez, A space-time discontinuous Galerkin method for convection and diffusion in injection moulding. Intern. J. Form. Proc. 7 (2003) 11.

    Google Scholar 

  14. E. Pichelin and T. Coupez, Finite element solution of the 3D mold filling problem for viscous incompressible fluid. Comput. Meth. Appl. Mech. Eng. 163 (1999) 371.

    Google Scholar 

  15. E. Bigot and T. Coupez, Capture of 3D moving free surfaces and material interfaces by mesh deformation. in Proceedings ECCOMAS 2000, Barcelona, CD Rom (2000).

  16. J. Bruchon and T. Coupez, Étude 3D de la formation d'une structure de mousse polymère par simulation de l'expansion anisotherme de bulles de gaz, Mécanique & Industries 4 (4)(2003) pp. 331.

    Google Scholar 

  17. Z. H. Tu, V. P. W. Shim and C. T. Lim, Plastic deformation modes in rigid polyurethane foam under static loading, Int. J. Solids Struct., 38 (2001) 9267.

    Article  Google Scholar 

  18. J. M. Castro and C. W. Macosko, Kinetics and rheology of typical polyurethane reaction injection molding systems, SPE ANTEC Tech. Papers (1980) 434.

  19. F. Dimier, N. Sbirrazzuoli, B. Vergnes and M. Vincent, Curing kinetics and chemorheological analysis of polyurethane formation, Polym. Eng. Sci., 44 (2004) 518.

    Article  Google Scholar 

  20. G. A. Campbell, Polyurethane foam process development. A systems engineering approach. J. Appl. Polym. Sci. 16 (1972) 1387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bikard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikard, J., Bruchon, J., Coupez, T. et al. Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method. J Mater Sci 40, 5875–5881 (2005). https://doi.org/10.1007/s10853-005-5022-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5022-9

Keywords

Navigation