Skip to main content
Log in

Orders for Simplifying Partial Partitions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper is the third in a series devoted to orders on partial partitions in the framework of image analysis; the first two (with a view to image filtering and segmentation) identified 4 basic operations on blocks involved in such orders: merging, apportioning, creating and inflating blocks. Here, we consider orders where growing a partial partition decreases its support and diminishes the number of blocks. This can be done by a combination of merging (or apportioning) blocks with removing or deflating blocks (the opposite of creating or inflating blocks). We also introduce related operations on blocks: partial apportioning and partial merging. The new orders that we obtain can be useful in relation to skeletonization, image simplification, for processing segmentation markers or to describe the evolution of object boundaries in hierarchies. There are also possible applications in geographic information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and computation of the medial axis—a state-of-the-art report. In: Möller, T., Hamann, T.B., Russell, R.D. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, p. 109125. Springer, Berlin (2009)

  3. Bell, E.T.: Exponential numbers. Am. Math. Mon. 41(7), 411–419 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, G., Couprie, M.: Isthmus based parallel and symmetric 3D thinning algorithms. Gr. Models 80, 1–15 (2015). doi:10.1016/j.gmod.2015.05.001

    Article  MATH  Google Scholar 

  5. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Dras̆kovic̆ová, H.: The lattice of partitions in a set. Acta Fac. Rerum Nat. Univ. Comen. Math. Publ. 24, 37–65 (1970)

    MathSciNet  Google Scholar 

  7. Dras̆kovic̆ová, H.: Congruence relations on the lattice of partitions in a set. Mat. C̆as. (Sl. Akad. Vied) 21, 141–153 (1971)

    MathSciNet  Google Scholar 

  8. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  9. Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 81–107. Wiley, New York (2010)

    Google Scholar 

  10. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  11. Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–627 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008). doi:10.1007/s10851-008-0090-5

    Article  MathSciNet  Google Scholar 

  13. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng. Commun. Comput. 21(5), 343–396 (2010). doi:10.1007/s00200-010-0129-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Ronse, C.: Orders on partial partitions and maximal partitioning of sets. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 49–60. Springer, Berlin (2011)

    Google Scholar 

  15. Ronse, C.: Ordering partial partitions for image segmentation and filtering: merging, creating and inflating blocks. J. Math. Imaging Vis. 49(2), 202–233 (2014). doi:10.1007/s10851-013-0455-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Ronse, C.: Orders on partial partitions based on block apportioning. Acta Appl. Math. 141(1), 69–105 (2016). doi:10.1007/s10440-014-0004-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 35–80. Wiley, New York (2010)

    Google Scholar 

  18. Rota, G.C.: The number of partitions of a set. Am. Math. Mon. 71(5), 498–504 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  20. Serra, J.: Ordre de la construction et segmentations hiérarchiques. Technical Report ESIEE/A2SI/IGM (2010)

  21. Serra, J.: Grain building ordering. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 37–48. Springer, Berlin (2011)

    Google Scholar 

  22. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ronse.

Additional information

This work received funding from the Agence Nationale de la Recherche, contract ANR-2010-BLAN-0205-01.

Appendix: More About Single Overlap

Appendix: More About Single Overlap

In [15] we indicated that the singularity relation satisfies the following:

We have the counterpart of it for single overlap:

(17)

In particular, single overlap is preserved by restriction: for any \(A \in \mathcal {P}(E)\), \(\pi _1 \vdash \pi _2 \;\Rightarrow \;\pi _1 \cap \mathcal {P}(A) \vdash \pi _2 \cap \mathcal {P}(A)\). Now the following complements Proposition 7:

Proposition 17

For any \(\pi _1,\pi _2 \in \varPi ^*(E)\),

$$\begin{aligned} \begin{array}{lrrl} \forall \, \pi _0 \in \varPi ^*(E), \quad &{} \pi _0 \le \pi _1 \vdash \pi _2 &{}\implies &{} \pi _0 \vdash \pi _2 , \\ \forall \, A \in \mathcal {P}(E), \quad &{} \pi _1 \vdash \pi _2 &{}\implies &{} \pi _1 \vdash \pi _2 \wedge \mathbf {1}_A , \\ \forall \, A \supseteq \mathsf {supp}(\pi _1), \quad &{} \pi _1 \vdash \pi _2 &{}\iff &{} \pi _1 \vdash \pi _2 \wedge \mathbf {1}_A . \end{array} \end{aligned}$$

In particular, single overlap is preserved by truncation: for any \(A \in \mathcal {P}(E)\), \(\pi _1 \vdash \pi _2 \;\Rightarrow \;\pi _1 \wedge \mathbf {1}_A \vdash \pi _2 \wedge \mathbf {1}_A\).

Proof

Let \(\pi _1 \vdash \pi _2\), that is (by Proposition 7), \(\pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)} \le \pi _2\). Then for \(\pi _0 \in \varPi ^*(E)\) such that \(\pi _0 \le \pi _1\), we get \(\pi _0 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)} \le \pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)} \le \pi _2\), that is, \(\pi _0 \vdash \pi _2\).

For \(A \in \mathcal {P}(E)\) we have \(\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A) = \mathsf {supp}(\pi _2) \cap A\), so \(\mathbf {1}_{\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A)} = \mathbf {1}_{\mathsf {supp}(\pi _2) \cap A} = \mathbf {1}_{\mathsf {supp}(\pi _2)} \wedge \mathbf {1}_A\), hence

$$\begin{aligned} \pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A)} = (\pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)}) \wedge \mathbf {1}_A \le \pi _2 \wedge \mathbf {1}_A , \end{aligned}$$

thus \(\pi _1 \vdash \pi _2 \wedge \mathbf {1}_A\). Combining both results with \(\pi _0 = \pi _1 \wedge \mathbf {1}_A\), we get \(\pi _1 \vdash \pi _2 \;\Rightarrow \;\pi _1 \wedge \mathbf {1}_A \vdash \pi _2 \;\Rightarrow \;\pi _1 \wedge \mathbf {1}_A \vdash \pi _2 \wedge \mathbf {1}_A\): single overlap is preserved by truncation.

Suppose finally that \(A \supseteq \mathsf {supp}(\pi _1)\); then \(\pi _1 \le \mathbf {1}_A\); now let \(\pi _1 \vdash \pi _2 \wedge \mathbf {1}_A\), that is, \(\pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A)} \le \pi _2 \wedge \mathbf {1}_A\); we saw above that \(\mathbf {1}_{\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A)} = \mathbf {1}_{\mathsf {supp}(\pi _2)} \wedge \mathbf {1}_A\); hence we get

$$\begin{aligned} \pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)}= & {} (\pi _1 \wedge \mathbf {1}_A) \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)} = \pi _1 \wedge (\mathbf {1}_{\mathsf {supp}(\pi _2)} \wedge \mathbf {1}_A) \\= & {} \pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2 \wedge \mathbf {1}_A)} \le \pi _2 \wedge \mathbf {1}_A \le \pi _2 , \end{aligned}$$

therefore \(\pi _1 \vdash \pi _2\). \(\square \)

As a counterpart of single overlap, we could consider the relation given by “every block of \(\pi _1\) overlaps (at least) one block of \(\pi _2\)”, which is equivalent both to \(\pi _1 \wedge \mathbf {1}_{\mathsf {supp}(\pi _2)} \Subset \pi _1\) and to \(\pi _1 \wedge \pi _2 \Subset \pi _1\). However, it seems that this relation is too general to produce a new partial order relation by intersecting it with other relations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronse, C. Orders for Simplifying Partial Partitions. J Math Imaging Vis 58, 382–410 (2017). https://doi.org/10.1007/s10851-017-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0717-5

Keywords

Navigation