Skip to main content
Log in

Semi-Inner-Products for Convex Functionals and Their Use in Image Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Semi-inner-products in the sense of Lumer are extended to convex functionals. This yields a Hilbert-space like structure to convex functionals in Banach spaces. In particular, a general expression for semi-inner-products with respect to one homogeneous functionals is given. Thus one can use the new operator for the analysis of total variation and higher order functionals like total-generalized-variation. Having a semi-inner-product, an angle between functions can be defined in a straightforward manner. It is shown that in the one homogeneous case the Bregman distance can be expressed in terms of this newly defined angle. In addition, properties of the semi-inner-product of nonlinear eigenfunctions induced by the functional are derived. We use this construction to state a sufficient condition for a perfect decomposition of two signals and suggest numerical measures which indicate when those conditions are approximately met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)

  2. Andreu, F., Caselles, V., Dıaz, J.I., Mazón, J.M.: Some qualitative properties for the total variation flow. J. Funct. Anal. 188(2), 516–547 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)

    MATH  Google Scholar 

  4. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. JMIV 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  6. Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J.: Clustering with bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). J. Differ. Equ. 184(2), 475–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20(4), 295–334 (2013)

    MATH  MathSciNet  Google Scholar 

  9. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bregman, L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bruck, R.: Nonexpansive projections on subsets of banach spaces. Pac. J. Math. 47(2), 341–355 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burger, M.: Bregman distances in inverse problems and partial differential equation. arXiv:1505.05191, (2015)

  13. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. Scale Space and Variational Methods in Computer Vision, pp. 16–27. Springer, Berlin (2015)

    Google Scholar 

  14. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals, 2016. http://arxiv.org/pdf/1601.02912v1.pdf. (Submitted)

  15. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Burger, M., Osher, S.: A guide to the tv zoo. Level Set and PDE Based Reconstruction Methods in Imaging, pp. 1–70. Springer, Berlin (2013)

    Chapter  Google Scholar 

  17. Censor, Y., Elfving, T.: A multiprojection algorithm using bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theoret. Found. Numer. Methods Sparse Recovery 9, 263–340 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Cox, B., Juditsky, A., Nemirovski, A.: Dual subgradient algorithms for large-scale nonsmooth learning problems. Math. Program. 148(1–2), 143–180 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Der, R., Lee, D.: Large-margin classification in banach spaces. In: International Conference on Artificial Intelligence and Statistics, pp. 91–98 (2007)

  21. Dragomir, S.S.: Semi-inner products and applications. Nova Science Publishers, New York (2004)

  22. Ekeland, I., Témam, R.: Convex analysis and variational problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999)

  23. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  24. Giga, Y., Kohn, R.V.: Scale-invariant extinction time estimates for some singular diffusion equations. Preprint Series in Mathematics, (963), Hokkaido University (2010)

  25. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imaging Vis. (2016). doi:10.1007/s10851-016-0665-5

  27. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly-textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2280–2289 (2006)

    Google Scholar 

  28. Giles, J.R.: Classes of semi-inner-product spaces. Trans. Am. Math. Soc. 129(3), 436–446 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  29. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jain, P., Kulis, B., Davis, J.V., Dhillon, I.S.: Metric and kernel learning using a linear transformation. J. Mach. Learn. Res. 13(1), 519–547 (2012)

    MATH  MathSciNet  Google Scholar 

  31. Lange, M., Biehl, M., Villmann, T.: Non-euclidean principal component analysis by hebbian learning. Neurocomputing 147, 107–119 (2015)

    Article  Google Scholar 

  32. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100(1), 29–43 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. The 15th Dean Jacquelines B. Lewis Memorial Lectures (2001)

  35. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM J. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\) norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yang, Y., Han, S., Wang, T., Tao, W., Tai, X.-C.: Multilayer graph cuts based unsupervised color-texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging. Pattern Recogn. 46(4), 1101–1124 (2013)

    Article  MATH  Google Scholar 

  40. Zhang, H., Xu, Y., Zhang, J.: Reproducing kernel banach spaces for machine learning. J. Mach. Learn. Res. 10, 2741–2775 (2009)

  41. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the support of the Israel Science Foundation (ISF), Grant 2097/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gilboa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilboa, G. Semi-Inner-Products for Convex Functionals and Their Use in Image Decomposition. J Math Imaging Vis 57, 26–42 (2017). https://doi.org/10.1007/s10851-016-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0661-9

Keywords

Navigation