Skip to main content
Log in

Optimal Bandwidth of the “Minkowski Content”-Based Estimator of the Mean Density of Random Closed Sets: Theoretical Results and Numerical Experiments

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The estimation of the mean density of random closed sets in \(\mathbb {R}^d\) with integer Hausdorff dimension \(n<d\) is a problem of interest from both a theoretical and an applicative point of view. In literature different kinds of estimators are available, mostly for the homogeneous case. Recently the non-homogeneous case has been faced by the authors; more precisely, two different kinds of estimators, asymptotically unbiased and weakly consistent, have been proposed: in Camerlenghi et al. (J Multivar Anal 125:65–88, 2014) a kernel-type estimator generalizing the well-known kernel density estimator for random variables, and in Villa (Stoch Anal Appl 28:480–504, 2010) an estimator based on the notion of Minkowski content of a set. The study of the optimal bandwidth of the “Minkowski content”-based estimator has been left as an open problem in Villa (Stoch Anal Appl 28:480–504, 2010, Sect. 6) and in Villa (Bernoulli 20:1–27, 2014, Remark 14), and only partially solved in Camerlenghi et al. (J Multivar Anal 125:65–88, 2014, Sect. 4), where a formula is available in the particular case of homogeneous Boolean models. We give here a solution of such an open problem, by providing explicit formulas for the optimal bandwidth for quite general random closed sets (i.e., not necessarily Boolean models or homogeneous germ-grain models). We also discuss a series of relevant examples and corresponding numerical experiments to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ambrosio, L., Capasso, V., Villa, E.: On the approximation of mean densities of random closed sets. Bernoulli 15, 1222–1242 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Colesanti, A., Villa, E.: Outer Minkowski content for some classes of closed sets and applications to stochastic geometry. Math. Ann. 342, 727–748 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  4. Baddeley, A., Barany, I., Schneider, R., Weil, W.: Stochastic Geometry. Lecture Notes in Mathematics, vol. 1982. Springer, Berlin (2007)

    Google Scholar 

  5. Baddeley, A., Molchanov, I.S.: On the expected measure of a random set. Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets (Fontainebleau, 1996), pp. 3–20. World Sci. Publishing, River Edge, NJ (1997)

    Google Scholar 

  6. Bellettini, G.: Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations, Scuola Normale Superiore di Pisa (Nuova Serie), vol. 12. Edizioni della Normale, Pisa (2013)

    Book  Google Scholar 

  7. Beneš, V., Rataj, J.: Stochastic Geometry: Selected Topics. Kluwer, Dordrecht (2004)

    Google Scholar 

  8. Bosq, D., Lecoutre, J.P.: Theorie De L’estimation Fonctionnelle. Economica, Paris (1987)

    Google Scholar 

  9. Camerlenghi, F., Capasso, V., Villa, E.: On the estimation of the mean density of random closed sets. J. Multivar. Anal. 125, 65–88 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Camerlenghi, F., Capasso, V., Villa, E.: Numerical experiments for the estimation of mean densities of random sets. In: Proceedings of the 11th European Congress of Stereology and Image Analysis. Image Anal. Stereol., vol. 33, pp. 83–94 (2014)

  11. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichcester (2013)

    Book  MATH  Google Scholar 

  12. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics., vol. 96, 2nd edn. Springer, New York (1990)

    Google Scholar 

  13. Cressie, N.A.C.: Statistics for Spatial Data, Revised edn. Wiley, New York (1993)

  14. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer Series in Statistics, New York (1988)

    MATH  Google Scholar 

  15. Devroye, L., Györfi, L.: Nonparametric Density Estimation: the \(L_1\) View. Wiley, New York (1985)

    Google Scholar 

  16. Diggle, P.J.: A kernel method for smoothing point process data. Appl. Stat. 34, 138–147 (1985)

    Article  MATH  Google Scholar 

  17. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. Härdle, W.: Smoothing Techniques with Implementation in S. Springer, New York (1991)

    Book  MATH  Google Scholar 

  19. Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications. Math. Z. 246, 237–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karr, A.F.: Point Processes and Their Statistical Inference. Marcel Dekker, New York (1986)

    MATH  Google Scholar 

  21. Last, G.: On mean curvature functions of Brownian paths. Stoch. Process Appl. 116, 1876–1891 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  23. Parzen, E.: On the estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  26. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986)

    Book  MATH  Google Scholar 

  27. Simonoff, J.S.: Smoothing Methods in Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  28. van Lieshout, M.N.M.: On estimation of the intensity function of a point process. Methodol. Comput. Appl. Probab. 14, 567–578 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Villa, E.: Mean densities and spherical contact distribution function of inhomogeneous Boolean models. Stoch. Anal. Appl. 28, 480–504 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Villa, E.: On the local approximation of mean densities of random closed sets. Bernoulli 20, 1–27 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zähle, M.: Random processes of Hausdorff rectifiable closed sets. Math. Nachr. 108, 49–72 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous referees for the accurate reading of the paper, and their valuable comments and suggestions which lead to an effective improvement of the presentation of our results. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Villa.

Appendix

Appendix

1.1 Positive reach, curvature measures, and related results

We summarize here some basic definitions and results on sets with positive reach and associated curvature measures, which might be useful for the non-expert reader for a more readability of the paper. We refer to the existent literature for a more exhaustive treatment of this subject.

Let \(A \subset \mathbb {R}^d\) be a non-empty closed set and \(z \in \mathbb {R}^d\), set \(\mathrm{dist}(A,z):= \inf \{ ||a-z|| \, : \, a \in A \}\).

Denote by \( \mathrm{Unp}(A):=\{x\in \mathbb {R}^d\,:\,\exists !\,a\in A\ \mathrm{such\ that }\ \mathrm{dist}\) \((x,A)=|| a-x||\}\) the set of points having a unique projection on \(A\). The definition of \(\mathrm{Unp}(A)\) implies the existence of a projection mapping \(\xi _A :\mathrm{Unp}(A) \rightarrow A\) which assigns to \(x \in \mathrm{Unp(A)}\) the unique point \(\xi _A(x) \in A\) such that \(\mathrm{dist}(z,A) = ||\xi _A(x)-x||\). Then for all \(x \in \mathrm{Unp}(A)\) with \(\mathrm{dist}(x,A)>0\) we may define \(u_A(x):= (x- \xi _A(x))/\mathrm{dist }(x,A)\). The set of all \(x \in \mathbb {R}^d \setminus A\) for which \(\xi _A(x)\) is not defined is called the exoskeleton of \(A\) and it is denoted by \(\mathrm{exo}(A)\). The exoskeleton is a measurable subset of \(\mathbb {R}^d\) and \(\mathcal {H} ^d(\mathrm{exo}(A))=0\). Denoted by \(\mathbf{S}^{d-1}:= \partial B_1(0)\) the unit sphere in \(\mathbb {R}^d\), the normal bundle of \(A\) is the subset of \(\partial A \times \mathbf{S}^{d-1}\):

$$\begin{aligned} N(A) := \{ (\xi _A(x), u_A(x) ) \, : \, x \not \in A \cup \mathrm{exo}(A) \} \end{aligned}$$

The reach function \(\delta (A, \cdot ) : \mathbb {R}^d \times \mathbf{S}^{d-1} \rightarrow [0, \infty ]\) is defined by \(\delta (A, x,u):= \inf \{ t \ge 0 \, : \, x +tu \in \mathrm{exo}(A)\}\) if \((x,u) \in N(A)\), \(\delta (A, x,u) := 0\) otherwise; then the reach of \(A\) is defined by

$$\begin{aligned} \mathrm{reach} (A):= \inf \{ \delta (A,x,u) \, : \, (x,u) \in N(A) \}. \end{aligned}$$

If \(\mathrm{reach}(A) > 0\) the set is said to be a set with positive reach.

For any non-empty closed set \(A\subset \mathbb {R}^d\) there exist uniquely determined signed measures \(\mu _0(A;\,\cdot \,),\ldots ,\mu _{d-1}(A;\,\cdot \,)\) on \(N(A)\), said support measures of A, which arise as coefficient measures of a local Steiner formula; namely in [19, Theorem 2.1] it is proved that

$$\begin{aligned}&\int _{\mathbb {R}^d \setminus A} f(x) \mathcal {H}^{d}(\mathrm{d}x) = \sum _{i=0}^{d-1} b_{d-i}(d-i)\int _{0}^{\infty } \int _{N(A)} t^{d-1-i}\nonumber \\&\quad \mathbf 1 _{[0, \delta (A,x,u))}(t) f(x+tu) \mu _i(A; \mathrm{d}(x,u)) \mathrm{d}t, \end{aligned}$$
(45)

for any measurable bounded function \(f : \mathbb {R}^d \rightarrow \mathbb {R}\) with compact support.

Furthermore, if \(\mathcal {H}^k(\partial A)=0\) for some \(k\in \{1,..., d-1\}\), \(\mu _k(A; \cdot ) \equiv 0\) (see [21, Proposition 2.4]).

We also remind that if the closed set \(A\) has positive reach, the following relationship between the support measure \(\mu _{i}(A;\,\cdot \,)\) and the curvature measure \(\varPhi _{i}(A;\,\cdot \,)\) associated with A introduced in [17] holds:

$$\begin{aligned} \mu _i (A; \cdot \times \mathbf{S}^{d-1}) = \varPhi _i(A; \cdot ) \quad \forall i = 0, ..., d-1 ; \end{aligned}$$
(46)

using Federer’s notation, \(\varPhi _i(A):=\varPhi _i(A;A)\) is the total curvature measure of \(A\). Morover, if \(\mathrm{reach}(A)>0\), the following global Steiner formula holds

$$\begin{aligned} \mathcal {H}^d(A_{\oplus r}) =\sum _{i=0}^d r^{d-i}b_{d-i}\varPhi _i(A),\quad \forall r<\mathrm{reach}(A); \end{aligned}$$
(47)

note that \(\varPhi _i(A)=0,\) for any \(i>n\), if \(\mathrm{dim}(A)=n\).

Let \(A\) be a closed subset of \(\mathbb {R}^d\), define

$$\begin{aligned} \partial ^{+} A = \{ x \in \partial A \, : \, (x,u) \in N(A) \text{ for } \text{ some } u \in \mathbf{S}^{d-1}\} , \end{aligned}$$

it is also well known that \(\partial A = \partial ^+ A\) if \(\mathrm{reach} (A) > 0\). For each \(x \in \partial ^+ A\), we can define

$$\begin{aligned} N(A,x) := \{ u \in \mathbf{S}^{d-1} \, : \, (x,u) \in N(A) \}; \end{aligned}$$

the normal cone of \(A\) at \(x\) is defined by \( n(A,x) := \{ \lambda u \, : \, \lambda \ge 0 \,, u \in N(A,x) \} .\)

Let

$$\begin{aligned} \partial ^{++} A := \{ x \in \partial ^+ A \, : \, \mathrm{dim} n(A,x) =1 \}, \end{aligned}$$
(48)

where \(\mathrm{dim} B\) denotes the dimension of the affine hull of \(B \subset \mathbb {R}^d\); then it follows that \(\partial ^{++} A\) is the disjoint union of the sets \(\partial ^1 A\) and \(\partial ^2 A\), defined by

$$\begin{aligned} \partial ^i A := \{ x \in \partial ^{++}A \, : \, \mathrm{card } N(A,x) = i \} \quad i = 1,2 . \end{aligned}$$

For \(x \in \partial ^1 A\), the unique element of \(N(A,x)\), say \(\nu (A,x)\), is the outer normal to \(A\) at \(x\); for \(x \in \partial ^2 A\) there exist two outer normal (\(\nu (A,x)\) and \(-\nu (A,x)\) by (48)) to \(A\) at \(x\). In particular we recall the following representation for \(\mu _{d-1} (A; \cdot )\) (see [19, Proposition 4.1]):

$$\begin{aligned}&\mu _{d-1} (A; \cdot ) = \frac{1}{2} \int _{\partial ^{1} A} \mathbf 1 _{\{(x , \nu (A,x))\in \cdot \}} \mathcal {H}^{d-1} (\mathrm{d}x) +\nonumber \\&\quad \frac{1}{2} \int _{\partial ^{2} A} \mathbf 1 _{\{ (x , \nu (A,x))\in \cdot \}} +\mathbf 1 _{\{(x , -\nu (A,x))\in \cdot \}}\mathcal {H}^{d-1} (\mathrm{d}x) \end{aligned}$$
(49)

Finally, we also recall that explicit description of the curvature measures of order zero is given in [19, Proposition 4.10]; in particular for any convex set \(A\) it holds (see [25, Secton 4.4]) \( \forall B\in \mathcal {B}_{\mathbb {R}^d} \)

$$\begin{aligned} \varPhi _0(A,B)= \frac{1}{d b_d}\int _{\mathbf{S}^{d-1}} \sum _{x \in B} \mathbf 1 _{N(A)}(x,u) \mathcal {H}^{d-1} (\mathrm{d}u). \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camerlenghi, F., Villa, E. Optimal Bandwidth of the “Minkowski Content”-Based Estimator of the Mean Density of Random Closed Sets: Theoretical Results and Numerical Experiments. J Math Imaging Vis 53, 264–287 (2015). https://doi.org/10.1007/s10851-015-0576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0576-x

Keywords

Mathematics Subject Classification

Navigation