Skip to main content
Log in

On Numerical Analysis of View-Dependent Derivatives in Computed Tomography

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We explore the numerical implementation of a view dependent derivative that occurs in \(\pi \)-line reconstruction formulas for two- and three-dimensional computed tomography. Focusing on two-dimensional fan-beam tomography, we provide an error analysis and a common framework for the comparison of several schemes used to discretize this derivative. The leading error terms for each scheme are determined. The results demonstrate some advantages and drawbacks of the methods that are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Defrise, M., Noo, F., Clackdoyle, R., Kudo, H.: Truncated Hilbert transform and image reconstruction from limited tomographic data. Inverse Probl. 22(3), 1037–1053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Faridani, A.: Fan-beam tomography and sampling theory. In: Olafsson, G., Quinto, E.T. (eds.) The Radon Transform, Inverse Problems, and Tomography, Proceedings of Symposia in Applied Mathematics, vol. 63, pp. 43–66. American Mathematical Society, Providence, Rhode Island (2006)

    Chapter  Google Scholar 

  3. Faridani, A., Hass, R., Solmon, D.C.: Numerical and theoretical explorations in helical and fan-beam tomography. J. Phys.: Conf. Ser. 124, 012024 (2008). doi:10.1088/1742-6596/124/1/012024

    Google Scholar 

  4. Hass, R., Faridani, A.: Regions of backprojection and comet tail artifacts for \(\pi \)-line reconstruction formulas in tomography. SIAM J. Imaging Sci. 5(4), 1159–1184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Herman, G., Naparstek, A.: Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data. SIAM J. Appl. Math. 33(3), 511–533 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Izen, S.: Sampling in flat detector fan beam tomography. SIAM J. Appl. Math. 72(1), 61–84 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    MATH  Google Scholar 

  8. Kalender, W.: Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 3rd edn. Publicis Publishing, Erlangen (2011)

    Google Scholar 

  9. Katsevich, A.: Theoretically exact filtered backprojection-type inversion algorithm for spiral ct. SIAM J. Appl. Math. 62(6), 2012–2026 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Katsevich, A.: An improved exact filtered backprojection algorithm for spiral computed tomography. Adv. Appl. Math. 32, 681–697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Katsevich, A.: A note on computing the derivative at a constant direction. Phys. Med. Biol. 56, N53–N61 (2011)

    Article  Google Scholar 

  12. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  13. Natterer, F.: Sampling in fan-beam tomography. SIAM J. Appl. Math. 53(2), 358–380 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  15. Noo, F., Clackdoyle, R., Pack, J.: A two-step hilbert transform method for 2d image reconstruction. Phys. Med. Biol. 49(17), 3903–3923 (2004)

    Article  Google Scholar 

  16. Noo, F., Defrise, M., Clackdoyle, R., Kudo, H.: Image reconstruction from fan-beam projections on less than a short scan. Phys. Med. Biol. 47, 2525–2546 (2002)

    Article  Google Scholar 

  17. Noo, F., Hoppe, S., Dennerlein, F., Lauritsch, G., Hornegger, J.: A new scheme for view-dependent data differentiation in fan-beam and cone-beam computed tomography. Phys. Med. Biol. 52, 5393–5414 (2007)

  18. Noo, F., Pack, J., Heuscher, D.: Exact helical reconstruction using native cone-beam geometries. Phys. Med. Biol. 48(23), 3787–3818 (2003)

    Article  Google Scholar 

  19. Rieder, A., Faridani, A.: The semidiscrete filtered back projection algorithm is optimal for tomographic inversion. SIAM J. Numer. Anal. 41(3), 869–892 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zamyatin, A.A., Taguchi, K., Silver, M.: Practical hybrid convolution algorithm for helical CT reconstruction. IEEE Trans. Nucl. Sci. 53, 167–174 (2006)

    Article  Google Scholar 

  21. Zou, Y., Pan, X.: An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT. Phys. Med. Biol. 49(22), N383–N387 (2004)

    Article  Google Scholar 

  22. Zou, Y., Pan, X.: Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT. Phys. Med. Biol. 49, 941–959 (2004)

    Article  Google Scholar 

  23. Zou, Y., Pan, X., Sidky, E.: Image reconstruction in regions-of-interest from truncated projections in a reduced fan-beam scan. Phys. Med. Biol. 50(1), 13–27 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was supported by NSF Grant DMS-0709495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Faridani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridani, A., Hass, R. On Numerical Analysis of View-Dependent Derivatives in Computed Tomography. J Math Imaging Vis 52, 356–368 (2015). https://doi.org/10.1007/s10851-015-0569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0569-9

Keywords

Navigation