Skip to main content
Log in

Optical Flow on Evolving Surfaces with Space and Time Regularisation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We extend the concept of optical flow with spatiotemporal regularisation to a dynamic non-Euclidean setting. Optical flow is traditionally computed from a sequence of flat images. The purpose of this paper is to introduce variational motion estimation for images that are defined on an evolving surface. Volumetric microscopy images depicting a live zebrafish embryo serve as both biological motivation and test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Sometimes it is possible to already capture the yolk’s surface with the microscope in a second sequence of images. We do not, however, use such additional data in this article.

  2. Distinguishing between a surface quantity and its coordinate representation is often avoided. We decided, however, to make this distinction for the data \(F\), and only for \(F\), as we found it helpful especially in Sect. 3.

  3. Note that this composition of \(F\) with \(\psi \) is necessary, because the conventional partial derivative \(\partial _t F(t_0,x)\) is meaningless in general.

  4. http://www.csc.univie.ac.at

References

  1. Abràmoff, M.D., Viergever, M.A.: Computation and visualization of three-dimensional soft tissue motion in the orbit. IEEE Trans. Med. Imag. 21(4), 296–304 (2002)

    Article  Google Scholar 

  2. Amat, F., Myers, E.W., Keller, P.J.: Fast and robust optical flow for time-lapse microscopy using super-voxels. Bioinformatics 29(3), 373–380 (2013)

    Article  Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (November 2011)

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Buibas, M., Yu, D., Nizar, K., Silva, G.A.: Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow. Ann. Biomed. Eng. 38(8), 2520–2531 (2010)

    Article  Google Scholar 

  6. Cermelli, P., Fried, E., Gurtin, M.E.: Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers Inc., New York, NY (1953)

    Google Scholar 

  8. Delpiano, J., Jara, J., Scheer, J., Ramírez, O.A., Ruiz-del Solar, J.: Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy. Mach. Vis. Appl. 23(4), 675–689 (2012)

    Article  Google Scholar 

  9. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, London (1976)

    MATH  Google Scholar 

  10. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  11. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Revised English Edition Translated and Edited by Richard A. Silverman. Prentice-Hall Inc., Englewood Cliffs, NJ (1963)

    Google Scholar 

  13. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  14. Hubený J., Ulman V., Matula P.: Estimating large local motion in live-cell imaging using variational optical flow. In: VISAPP: Proceedigs of the Second International Conference on Computer Vision Theory and Applications, pp. 542–548. INSTICC, Lisbon (2007)

  15. Imiya, A., Sugaya, H., Torii, A., Mochizuki, Y.: Variational analysis of spherical images. In: Gagalowicz, A., Philips, W. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 3681, pp. 104–111. Springer, Berlin (2005)

    Chapter  Google Scholar 

  16. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995)

    Article  Google Scholar 

  17. Kirisits, C., Lang, L.F., Scherzer, O.: Optical flow on evolving surfaces with an application to the analysis of 4D microscopy data. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM’13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 246–257. Springer, Berlin (2013)

  18. Kühnel, W.: Differential Geometry: Curves–Surfaces–Manifolds. Student Mathematical Library, vol. 16. American Mathematical Society, Providence, RI (2006). Translated from the 2003 German original by Bruce Hunt

    Google Scholar 

  19. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997)

    MATH  Google Scholar 

  20. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2013)

    MATH  Google Scholar 

  21. Lefèvre, J., Baillet, S.: Optical flow and advection on 2-Riemannian manifolds: a common framework. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1081–1092 (2008)

    Article  Google Scholar 

  22. Megason, S.G., Fraser, S.E.: Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120(11), 1407–1420 (2003)

    Article  Google Scholar 

  23. Melani, C., Campana, M., Lombardot, B., Rizzi, B., Veronesi, F., Zanella, C., Bourgine, P., Mikula, K., Peyriéras, N., Sarti, A.: Cells tracking in a live zebrafish embryo. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), pp. 1631–1634 (2007)

  24. Miura, K.: Tracking movement in cell biology. In: Rietdorf, J. (ed.) Microscopy Techniques. Advances in Biochemical Engineering/Biotechnology, vol. 95, pp. 267–295. Springer, Belin (2005)

    Chapter  Google Scholar 

  25. Mizoguchi, T., Verkade, H., Heath, J.K., Kuroiwa, A., Kikuchi, Y.: Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135(15), 2521–2529 (2008)

    Article  Google Scholar 

  26. Quelhas, P., Mendonça, A.M., Campilho, A.: Optical flow based Arabidopsis Thaliana root meristem cell division detection. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 6112, pp. 217–226. Springer, Berlin (2010)

    Chapter  Google Scholar 

  27. Schmid, B., Shah, G., Scherf, N., Weber, M., Thierbach, K., Campos Pérez, C., Roeder, I., Aanstad, P., Huisken, J.: High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013)

    Article  Google Scholar 

  28. Torii, A., Imiya, A., Sugaya, H., Mochizuki, Y.: Optical flow computation for compound eyes: variational analysis of omni-directional views. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) Brain, Vision, and Artificial Intelligence. Lecture Notes in Computer Science, vol. 3704, pp. 527–536. Springer, Berlin (2005)

    Chapter  Google Scholar 

  29. Warga, R.M., Nüsslein-Volhard, C.: Origin and development of the zebrafish endoderm. Development 126(4), 827–838 (1999)

    Google Scholar 

  30. Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A survey on variational optic flow methods for small displacements. In: Scherzer, O. (ed.) Mathematical Models for Registration and Applications to Medical Imaging. Mathematics in Industry, vol. 10, pp. 103–136. Springer, Berlin (2006)

    Chapter  Google Scholar 

  31. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14, 245–255 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Pia Aanstad from the University of Innsbruck for sharing her biological insight and for kindly providing the microscopy data. This work has been supported by the Vienna Graduate School in Computational Science (IK I059-N) funded by the University of Vienna. In addition, we acknowledge the support by the Austrian Science Fund (FWF) within the national research networks “Photoacoustic Imaging in Biology and Medicine” (project S10505-N20, Reconstruction Algorithms for PAI) and “Geometry + Simulation” (project S11704, Variational Methods for Imaging on Manifolds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas F. Lang.

Appendix

Appendix

We first sketch a proof about the statement from Sect. 2.1 that the normal velocity of an evolving surface is independent of \(\phi \).

Proposition 1

Let \(\phi \) be a Langrangian specification of \(\mathcal {M}\) and \(\mathbf{V}\) the corresponding velocity as defined in (3). Then \(\mathbf{V} \cdot \mathbf{N}\) is independent of the chosen specification.

Proof

We can represent \(\bar{\mathcal {M}}\) locally as the level set of a real-valued function \(G(t,x)\), whose gradient does not vanish, see e.g. [20, Prop. 5.16]. We now express \(\mathbf{V} \cdot \mathbf{N}\) solely in terms of \(G\) and thereby prove the assertion. Observing that the composition of \(G\) with \(\phi \) is constant, we calculate

$$\begin{aligned} 0 = \frac{\hbox {d}}{\hbox {d} t} G(t,\phi (t,x_0)) = \partial _t G + \nabla _{\mathbb {R}^3} G \cdot \mathbf{V} = \partial _t G + |\nabla _{\mathbb {R}^3} G| \mathbf{V} \cdot \mathbf{N}. \end{aligned}$$

The second equality holds, because \(\nabla _{\mathbb {R}^3} G\) is normal to the surface. We conclude that

$$\begin{aligned} \mathbf{V} \cdot \mathbf{N} = - \frac{\partial _t G}{|\nabla _{\mathbb {R}^3} G|}. \end{aligned}$$

\(\square \)

In other words, different specifications of a surface can only differ in their respective tangential velocities.

Next we prove the transformation law (11), (20) for the connection coefficients \(\tilde{\varGamma }^j_{\mu j}\).

Lemma 3

The symbols defined by (10) are given by (11).

Proof

Take inner products on both sides of (11) with \(\mathbf{e}_j\) to get

$$\begin{aligned} \mathbf{e}_j \cdot \nabla _{\mathbf{e}_i} \mathbf{e}_k = \tilde{\varGamma }^j_{ik}. \end{aligned}$$

Next express both terms on the left hand side in the coordinate basis by using \(\mathbf{e}_j = \alpha _j^m \partial _m \mathbf{x}\) and formula (7). The assertion follows now immediately. \(\square \)

An analogous calculation yields formula (20).

For our implementation the Euler–Lagrange equations (29) are needed in the following form

$$\begin{aligned} \begin{aligned}&d^{\nu \sigma } \partial _{\nu \sigma }w^m + c^{\sigma m}_{i} \partial _\sigma w^i + b^m_{i} w^i = a^m , \quad \text {in } D, \\&q^{\nu \sigma } \partial _\sigma w^m + p_{i}^{\nu m} w^i = 0, \quad \text {on } \{\xi ^\nu = 0\} \cup \{\xi ^\nu = 1\}, \end{aligned} \end{aligned}$$
(33)

where we assumed \(D=(0,1)^3\). As usual the system is to be understood for \(m=1,2\) and \(\nu =0,1,2\). Below we give the exact coefficients.

$$\begin{aligned} \begin{aligned} a^m&= -\alpha _m^i \partial _i f \partial _t f\\ b^m_{i}&= \alpha _m^j \alpha _i^k \partial _j f \partial _k f \\&\quad + \sum \limits _{\mu } \lambda _\mu \Bigg ( \sum _{j}\tilde{\varGamma }^j_{\mu m} \tilde{\varGamma }^j_{\mu i} \!-\! G_\nu \alpha ^\nu _\mu \tilde{\varGamma }^m_{\mu i} \!+\! \partial _\nu \Big ( \alpha ^\nu _\mu \tilde{\varGamma }^m_{\mu i} \Big ) \Bigg )\\ c^{\sigma m}_{i}&= \sum \limits _{\mu } \lambda _\mu \Bigg ( \alpha ^\sigma _\mu \tilde{\varGamma }^i_{\mu m} - \alpha ^\sigma _\mu \tilde{\varGamma }^m_{\mu i} \\&\quad -\delta _{im} \left( G_\nu \alpha ^\nu _\mu \alpha ^\sigma _\mu + \partial _\nu ( \alpha ^\nu _\mu \alpha ^\sigma _\mu ) \right) \Bigg )\\ d^{\nu \sigma }&= -\sum \limits _{\mu } \lambda _\mu \alpha ^\nu _\mu \alpha ^\sigma _\mu \\ p_{i}^{\nu m}&= \sum \limits _{\mu } \lambda _\mu \alpha ^\nu _\mu \tilde{\varGamma }^m_{\mu i} \\ q^{\nu \sigma }&= \sum \limits _{\mu } \lambda _\mu \alpha ^\nu _\mu \alpha ^\sigma _\mu \end{aligned} \end{aligned}$$
(34)

Here we used the shorthand

$$\begin{aligned} G_\nu = \frac{\partial _\nu \sqrt{ \det g}}{2 \sqrt{ \det g}}. \end{aligned}$$

Recall that the functional without time regularisation (25) leads to a sequence of decoupled systems for every instant \(t\). Each of those has the form

$$\begin{aligned} \begin{aligned}&d^{jk} \partial _{jk}w^m + c^{k m}_{i} \partial _k w^i + b^m_{i} w^i = a^m , \qquad \text {in } D,\\&q^{jk} \partial _k w^m + p_{i}^{ mj} w^i = 0, \qquad \text {on } \{\xi ^j = 0\} \cup \{\xi ^j = 1\}. \end{aligned} \end{aligned}$$

Note that, in comparison to system (33), we only replaced Greek indices by Latin ones. The coefficients \(a,b,c,d,p,q\) of this simpler system can be obtained from the list above by setting \(\lambda _0 = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirisits, C., Lang, L.F. & Scherzer, O. Optical Flow on Evolving Surfaces with Space and Time Regularisation. J Math Imaging Vis 52, 55–70 (2015). https://doi.org/10.1007/s10851-014-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0513-4

Keywords

Navigation