Blackett D. W. (1983) Elementary topology. Academic Press, London

Google ScholarEuler, L. (1768). Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique et de Philosophie, Saint-Pétersbourg: De l’Académie des Sciences. (H. Hunter, *Letters of Euler to a German Princess on Different Subjects in Physics and Philosophy*, Thoemmes Press, 1997, English trans.).

Gentzen, G. (1934). Untersuchungen über das logische Schließen, *Mathematische Zeitschrift*, 39, 176–210, 405–431. (Investigations into logical deduction. In M. E. Szabo (ed.), *The collected Papers of Gerhard Gentzen*, 1969, English trans.).

Hammer E. (1995) Logic and visual information. CSLI Publications, Stanford, CA

Google ScholarHammer E., Danner N. (1996) Towards a model theory of diagrams. Journal of Philosophical Logic 25(5): 463–482

Google ScholarHammer E., Shin S.-J. (1998) Euler’s visual logic. History and Philosophy of Logic 19: 1–29

CrossRefGoogle ScholarHowse, J., Molina, F., & Taylor, J. (2000). SD2: A sound and complete diagrammatic reasoning system. In *2000 IEEE international symposium on visual languages*, (pp. 127–134).

Howse J., Stapleton G., Taylor J. (2005) Spider diagrams. LMS Journal of Computation and Mathematics 8: 145–194

Google ScholarMineshima, K., Okada, M., & Takemura, R. (2009). Conservativity for a hierarchy of Euler and Venn reasoning systems. In *Proceedings of visual languages and logic 2009, CEUR series* (Vol. 510, pp. 37–61).

Mineshima, K., Okada, M., & Takemura, R. (2010). Two types of diagrammatic inference systems: Natural deduction style and resolution style. In *Diagrammatic representation and inference: 6th international conference, Diagrams 2010, lecture notes in artificial intelligence*, Springer (pp. 99–114).

Molina, F. (2001). *Reasoning with extended Venn–Peirce diagrammatic systems*. Ph.D. thesis, University of Brighton.

Okada M. (1999) Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic. Theoretical Computer Science 227(1–2): 333–396

CrossRefGoogle ScholarPeirce, C. S. (1933). In C. Hartshorne, & P. Weiss (Eds.), *Collected papers of Charles Sanders Peirce* (Vol. 4). Cambridge, MA: Harvard University Press.

Sato, Y., Mineshima, K., & Takemura, R. (2010). The efficacy of Euler and Venn diagrams in deductive reasoning: Empirical findings. In *Diagrammatic representation and inference: 6th international conference, Diagrams 2010, lecture notes in artificial intelligence*, Springer (pp. 6–22).

Shin S.-J. (1994) The logical status of diagrams. Cambridge University Press, Cambridge, MA

Google ScholarStapleton, G. (2005). A survey of reasoning systems based on Euler diagrams. In *Proceedings of the first international workshop on Euler diagrams (Euler 2004), electronic notes in theoretical computer science* (Vol. 134, pp. 127–151).

Stapleton, G., Howse, J., Rodgers, P., & Zhang, L. (2008). Generating Euler diagrams from existing layouts. In *Layout of (software) engineering diagrams 2008, electronic communications of the EASST*, (Vol. 13, pp. 16–31).

Stapleton G., Rodgers P., Howse J., Zhang L. (2011) Inductively generating Euler diagrams. IEEE Transactions on Visualization and Computer Graphics 17(1): 88–100

CrossRefGoogle ScholarSwoboda N., Allwein G. (2004) Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference. Journal on Software and System Modeling 3(2): 136–149

CrossRefGoogle ScholarVenn J. (1881) Symbolic logic. Macmillan, London

Google Scholar