Skip to main content
Log in

Trapping of organophosphorus chemical nerve agents by pillar[5]arene: A DFT, AIM, NCI and EDA analysis

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The encapsulation of organophosphorus (OP) nerve agents by pillar[5]arene (P5) molecule, shows that adsorption occurs with a larger structural reorganization of the host molecule. The computed binding energies shows that the complexes formed are more stable inside the cavity. Tabun was found to have the highest binding energy among the studied OPs. The computed Gibbs free energy is negative for Dimethyl methylphosphonate, sarin and tabun, and are positive for soman (GD) and ethyl-S-dimethylaminoethyl methylphosphonothiolate (VX). The inclusion complexes were found to have lower band gap. The quantum theory of Atoms-in-molecules analysis shows that ρ values were positive which implies the existence of noncovalent interactions. The Laplacian of the charge density ∇2ρ for bond critical points bonds are small and are negative which indicates the depletion of electronic charge along the bond paths and existence of an electrostatic nature of bonding between the guest and host molecule. The noncovalent interactions analysis clearly shows the existence of hydrogen bonding and van der Waals bonding in these inclusion complexes. The energy decomposition analysis shows that the, interaction between the P5 and the larger guest molecules VX and GD are mainly due to electrostatic interaction and for small guest, the interactions are mostly of van der Waals type.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh, V.V.: Recent advances in electrochemical sensors for detecting weapons of mass destruction. A review. Electroanalysis. 28, 920–935 (2016)

    Article  CAS  Google Scholar 

  2. Dwyer, M., Javor, S., Ryan, D.A., Smith, E.M., Wang, B., Zhang, J., Cashman, J.R.: Crystal structure of Baeyer–Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway. BioChemistry. 53, 4476–4487 (2014)

    Article  CAS  Google Scholar 

  3. Schmidt, C., Breyer, F., Blum, M.-M., Thiermann, H., Worek, F., John, H.: V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond. Anal. Bioanal. Chem. 21, 5171–5185 (2014)

    Article  Google Scholar 

  4. Lotti, M., Moretto, A.: Organophosphate-induced delayed polyneuropathy. Toxicol. Rev. 24, 37–49 (2005)

    Article  CAS  Google Scholar 

  5. Li, J., Ma, X., Su, G., Giesy, J.P., Xiao, Y., Zhou, B., Letcher, R.J., Liu, C.: Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. Environ. Pollut. 218, 50–58 (2016)

    Article  CAS  Google Scholar 

  6. Fischer, E., Blum, M.-M., Alwan, W.S., Forman, J.E.: Sampling and analysis of organophosphorus nerve agents: analytical chemistry in international chemical disarmament. Pure Appl. Chem. (2016) doi:10.1515/pac-2016-0902

    Google Scholar 

  7. Rosman, Y., Eisenkraft, A., Milk, N., Shiyovich, A., Ophir, N., Shrot, S., Kreiss, Y., Kassirer, M.: Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann. Intern. Med. 160, 644–648 (2014)

    Article  Google Scholar 

  8. Okumura, T., Takasu, N., Ishimatsu, S., Miyanoki, S., Mitsuhashi, A., Kumada, K., Tanaka, K., Hinohara, S.: Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med. 28, 129–135 (1996)

    Article  CAS  Google Scholar 

  9. Jang, Y.J., Kim, K., Tsay, O.G., Atwood, D.A., Churchill, D.G.: Update 1 of: destruction and detection of chemical warfare agents. Chem. Rev. 115, PR1–PR76 (2015)

    Article  Google Scholar 

  10. Pan, S., Mandal, S., Chattaraj, P.K.: Cucurbit[6]uril: A possible host for noble gas atoms. J. Phys. Chem. B. 119, 10962–10974 (2015)

    Article  CAS  Google Scholar 

  11. Bassanetti, I., Comotti, A., Sozzani, P., Bracco, S., Calestani, G., Mezzadri, F., Marchio, L.: Porous molecular crystals by macrocyclic coordination supramolecules. J. Am. Chem. Soc. 136, 14883–14895 (2014)

    Article  CAS  Google Scholar 

  12. Kumari, H., Erra, L., Webb, A.C., Bhatt, P., Barnes, C.L., Deakyne, C.A., Adams, J.E., Barbour, L. J., Atwood, J.L.: Pyrogallol[4]arenes as frustrated organic solids. J. Am. Chem. Soc. 135, 16963–16967 (2013)

    Article  CAS  Google Scholar 

  13. Thallapally, P.K., McGrail, B.P., Dalgarno, S.J., Schaef, H.T., Tian, J., Atwood, J.L.: Gas-induced transformation and expansion of a non-porous organic solid. Nat. Mater. 7, 146–150 (2008).

    Article  CAS  Google Scholar 

  14. Miyahara, Y., Abe, K., Inazu, T.: “Molecular” Molecular Sieves: Lid-Free Decamethylcucurbit[5]uril Absorbs and Desorbs Gases Selectively. Angew. Chem. Int. Edn. 41, 3020–3023 (2002)

    Article  CAS  Google Scholar 

  15. Venkataramanan, N.S., Suvitha, A., Mizuseki, H., Kawazoe, Y.: Computational Study on the Interactions of Mustard Gas with Cucurbituril Macrocycles. Int. J. Quantum Chem. 115, 1515–1525 (2015)

    Article  CAS  Google Scholar 

  16. Cabral, B.J.C., Coutinho, K., Canuto, S.: Dynamics of endo- vs. exo-complexation and electronic absorption of calix[4]arene-Ar2. Chem. Phys. Lett. 612, 266–272 (2014)

    Article  CAS  Google Scholar 

  17. Ruan, Y., Dalkilic, E., Peterson, P.W., Pandit, A., Dastan, A., Brown, J.D., Polen, S.M., Hadad, C.M., Badjic, J.D.: Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets. Chem. Eur. J. 20, 4251–4256 (2014)

    Article  CAS  Google Scholar 

  18. Czar, M.F., Jockusch, R.A.: Understanding photophysical effects of cucurbituril encapsulation: a model study with acridine orange in the gas phase. Chem. Phys. Chem. 14, 1138–1148 (2013)

    CAS  Google Scholar 

  19. Jie, K., Yao, Y., Chi, X., Huang, F.: A CO2-responsive pillar[5]arene: synthesis and self-assembly in water. Chem. Commun. 50, 5503–5505 (2014)

    Article  CAS  Google Scholar 

  20. Ogoshi, T., Kayama, H., Yamafuji, D., Aoki, T., Yamagishi, T.-A.: Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene. Chem. Sci. 3, 3221–3226 (2012)

    Article  CAS  Google Scholar 

  21. Pan, M., Xue, M.: Pillar[5]arene derivatives with three different kinds of repeating units: first examples, crystal structures and selective preparation. RSC Adv. 4, 260–263 (2014)

    Article  CAS  Google Scholar 

  22. Strutt, N.L., Zhang, H., Schneebeli, S.T., Stoddart, J.F.: Amino-functionalized pillar[5]arene. Chem. Eur. J. 20, 10996–11004 (2014)

    Article  CAS  Google Scholar 

  23. Kou, Y., Tao, H., Cao, D., Fu, Z., Schollmeyer, D., Meier, H.: Synthesis and conformational properties of nonsymmetric pillar[5]arenes and their acetonitrile inclusion compounds. Eur. J. Org. Chem. 33, 6464–6470 (2010)

    Article  Google Scholar 

  24. Han, C., Ma, F., Zhang, Z., Xia, B., Yu, Y., Huang, F.: DIBPillar[n]arenes (n = 5, 6): syntheses, X-ray crystal structures, and complexation with n-Octyltriethyl ammonium hexafluorophosphate. Org. Lett. 12, 4360–4363 (2010)

    Article  CAS  Google Scholar 

  25. Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Selective complexation of n-alkanes with pillar[5]arene dimers in organic media. Chem. Commun. 47, 10290–10292 (2011)

    Article  CAS  Google Scholar 

  26. Wheate, N.J., Dickson, K.A., Kim, R.R., Nematollahi, A., Macquart, R.B., Kayser, V., Yu, G., Church, W.B., Marsh, D.J.: Host-guest complexes of carboxylated pillar[n]arenes with drugs. J. Pharm. Sci. 105, 3615–3625 (2016)

    Article  CAS  Google Scholar 

  27. Peerannawar, S.R., Gejji, S.P.: Molecular interactions between pillar[5]arene and bis(pyridinium) derivatives. Comput. Theor. Chem. 999, 169–178 (2012)

    Article  CAS  Google Scholar 

  28. Zhang, J., Ren, S.: DFT/TDDFT investigation on the chemical reactivities, aromatic properties, and UV–Vis absorption spectra of 1-butoxy-4-methoxybenzenepillar[5]arene constitutional isomers. J. Mol. Model. 22, 209 (2016)

    Article  CAS  Google Scholar 

  29. Head, A.R., Tsyshevsky, R., Trotochuad, L., Eichhorn, B., Kuklja, M.M., Bluhm, H.: Electron spectroscopy and computational studies of dimethyl methylphosphonate. J. Phys. Chem. A. 120, 1985–1991 (2016)

    Article  CAS  Google Scholar 

  30. Ahmadian, N., Ganji, M.D., Laffafchy, M.: Theoretical investigation of nerve agent DMMP adsorption onto Stone–Wales defected single-walled carbon nanotube. Mater. Chem. Phys. 135, 569–574 (2012)

    Article  CAS  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Star-overov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Strat-mann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian G09, Revision D.01. Gaussian, Inc., Wallingford, CT (2010)

    Google Scholar 

  32. Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 33, 8822–8824 (1986)

    Article  CAS  Google Scholar 

  33. Vahtras, O., Almlöf, J., Feyereisen, M.W.: Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213, 514–518 (1993)

    Article  CAS  Google Scholar 

  34. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  35. Biegler-Konig, F., Schonbohm, J., Bayles, D.: AIM2000. J. Comp. Chem. 22, 545–559 (2001)

    Article  Google Scholar 

  36. Lu, T., Chen, F.: Multiwfn: A multifunctional wavefunction analyzer. J. Comp. Chem. 33, 580–592 (2012)

    Article  Google Scholar 

  37. Zhurko, G. A.: http://www.chemcraftprog.com

  38. Venkataramanan, N.S., Suvitha, A.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83, 387–400 (2015)

    Article  CAS  Google Scholar 

  39. Venkataramanan, N.S., Suvitha, A., Mizuseki, H., Kawazoe, Y.: Theoretical prediction of the complexation behaviors of antitumor platinum drugs with cucurbiturils. J. Phys. Chem. B. 116, 14029–14039 (2012)

    Article  CAS  Google Scholar 

  40. Suvitha, A., Venkataramanan, N.S., Mizuseki, H., Kawazoe, Y., Ohuchi, N.: Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8. J. Incl. Phenom Macrocycl. Chem. 66, 213–218 (2010)

    Article  CAS  Google Scholar 

  41. Venkataramanan, N.S., Sahara, R., Mizuseki, H., Kawazoe, Y.: Hydrogen adsorption on lithium-functionalized calixarenes: a computational study. J. Phys. Chem. C. 112, 19676–19679 (2008)

    Article  CAS  Google Scholar 

  42. Venkataramanan, N.S.: Cooperativity of intermolecular hydrogen bonds in microsolvated DMSO and DMF clusters: a DFT, AIM, and NCI analysis. J. Mol. Model. 22, 1 (2016)

    Article  CAS  Google Scholar 

  43. Bader, R.F.: Atoms in molecules: a quantum theory. Clarendon press, Oxford (1990)

    Google Scholar 

  44. Grimme, S.: Theoretical bond and strain energies of molecules derived from properties of the charge density at bond critical points. J. Am. Chem. Soc. 118, 1529–1534 (1996)

    Article  CAS  Google Scholar 

  45. Koch, U., Popelier, P.L.A: Characterization of C–H–O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747–9754 (1995)

    Article  CAS  Google Scholar 

  46. Popelier, P.L.A: Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A. 102, 1873–1878 (1998)

    Article  CAS  Google Scholar 

  47. Contreras-Garcia, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W.: NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2012)

    Article  Google Scholar 

  48. Saleh, G., Gatti, C., Lo Presti, L., Contreras-Garcia, J: Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chem. Eur. J. 18, 15523–15536 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SA thank the SERB-DST, India for funding through a project with sanction No. SB/FT/CS-038/2013. NSV thank the Center for Computational Materials Science (CCMS), Tohoku university, Japan and its crew for the computational support though the SR-16000K super computer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambigapathy Suvitha or Natarajan Sathiyamoorthy Venkataramanan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvitha, A., Venkataramanan, N.S. Trapping of organophosphorus chemical nerve agents by pillar[5]arene: A DFT, AIM, NCI and EDA analysis. J Incl Phenom Macrocycl Chem 87, 207–218 (2017). https://doi.org/10.1007/s10847-017-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0691-y

Keywords

Navigation