Skip to main content
Log in

Study of host–guest interaction between ß-cyclodextrin and alkyltrimethylammonium bromides in water

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrins were found to play important roles in self-assembly systems of surfactants. The interactions between host molecule ß-cyclodextrin (CD) and model cationic surfactants, alkyltrimethylammonium bromides with different alkyl chain length: dodecyl-(C12TAB), tetradecyl-(C14TAB) and hexadecyl-(C16TAB) are studied by means of conductivity measurements at 313.2 K. The data obtained indicate that inclusion complexes (CD:S+) had formed, and apparent critical micelle concentration (CMC*) is equivalent to the combined concentrations of surfactant monomers complexed with the CD and that of a free dissolved monomer in equilibrium with the micellized surfactant without CD. Inclusion complexes were characterized by an equilibrium binding constant K 11, which value increases as the length of alkyl chains, and consequently the hydrophobicity, increases. From mathematical model the concentrations of the uncomplexed cyclodextrin, uncomplexed surfactant ion, and inclusion complex in the submicellar, as well as in the micellar range were calculated. The competition between the micellization and complexation processes leads to the existence of a significant concentration of free CD in equilibrium with the micellar aggregates. The percentage of uncomplexed cyclodextrin in equilibrium with the micelles is independent on cyclodextrin concentration for a particular ternary system and is 31, 37, and 34 % for C12TAB/water/ß-CD, C14TAB/water/ß-CD and C16TAB/water/ß-CD, respectively. By using standard Gibbs free energy for micellization and surfactant complexation by CD, we can explain the observed behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overwiew of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrin-an explanation of the abnormal solubility of beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 13, 139–143 (1992)

    Article  CAS  Google Scholar 

  3. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010)

    Article  CAS  Google Scholar 

  4. Valente, A.J.M., Soderman, O.: The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 205, 156–176 (2014)

    Article  CAS  Google Scholar 

  5. Junquera, E., Aicart, E.: Potentiometric study of the encapsulation of ketoprophen by hydroxypropyl-β-cyclodextrin. Temperature, solvent, and salt effects. J. Phys. Chem. B 101, 7163–7171 (1997)

    Article  CAS  Google Scholar 

  6. Kurkov, V.S., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453, 167–180 (2013)

    Article  CAS  Google Scholar 

  7. Atkins, P., de Paula, J.: Physical Chemistry, 9th edn. W.H. Freeman and Company, New York (2010)

    Google Scholar 

  8. Fendler, J.H., Fendler, E.J.: Catalysis in micellar and macromolecular systems. Academic Press, New York (1975)

    Google Scholar 

  9. Marcolongo, J.P., Mirenda, M.: Thermodynamics of sodium dodecyl sulfate (SDS) micellization: an undergraduate laboratory experiment. J. Chem. Edu. 88, 629–633 (2011)

    Article  CAS  Google Scholar 

  10. Badache, L., Lehanine, Z., Abderrahmane, W.A.: Synthesis and surface properties study of a series of cationic surfactants with different hydrophobic chain lengths. J. Surfact. Deterg. 15, 715–720 (2012)

    Article  CAS  Google Scholar 

  11. Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena, 4th edn. Wiley, New Jersey (2012)

    Book  Google Scholar 

  12. Jiang, L., Yan, Y., Huang, J.: Versatility of cyclodextrins in self-assembly systems of amphiphiles. Adv. Colloid Interface Sci. 169, 13–25 (2011)

    Article  CAS  Google Scholar 

  13. Gaitano, Gonzalez-: G., Sanz-Garcia, T., Tardajos, G.: molar partial compressibilities and volumes, 1H NMR, and molecular modeling studies of the ternary systems β-cyclodextrin + sodium octanoate/sodium decanoate + water. Langmuir 15, 7963–7972 (1999)

    Article  Google Scholar 

  14. Cabaleiro-Lago, C., Nilsson, M., Söderman, O.: Self-diffusion NMR studies of the host-guest interaction between β-cyclodextrin and alkyltrimethylammonium bromide surfactants. Langmuir 21, 11637–11644 (2005)

    Article  CAS  Google Scholar 

  15. Valente, A.J.M., Dinis, C.J.S., Pereira, R.F.P., Ribeiro, A.C.F., Lobo, V.M.M.: Interactions between β-cyclodextrin and some sodium alkyl sulfates and sulfonates as seen by electrical conductivity measurements. Port. Electrochem. Acta 24, 129–136 (2006)

    Article  CAS  Google Scholar 

  16. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical-chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  17. Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J.: A review on the use of cyclodextrins in foods. Food Hydrocolloids 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  18. Garcia-Rio, L., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Investigation of micellar media containing β-cyclodextrin by means of reaction kinetics: basic hydrolysis of N-methyl-N-nitroso-p-toluenesulfonamide. J. Phys. Chem. B 101, 7383–7389 (1997)

    Article  CAS  Google Scholar 

  19. Garcia-Rio, L., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Basic hydrolysis of m-nitrophenyl acetate in micellar media containing β-cyclodextrin. J. Phys. Chem. B 102, 4581–4587 (1998)

    Article  CAS  Google Scholar 

  20. Alvarez, A.R., Garcia-Rio, L., Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Basic hydrolysis of substituted nitrophenyl acetates in β-cyclodextrin/surfactant mixed systems. Evidence of free cyclodextrin in equilibrium with micellized surfactant. Langmuir 15, 8368–8375 (1999)

    Article  CAS  Google Scholar 

  21. Fernández, I., Garcia-Rio, L., Hervés, P., Mejuto, J.C., Pérez-Juste, J., Rodriguez-Dafonte, P.: β-cyclodextrin-micelle mixed systems as reaction medium. Denitrosation of N-methyl-N-nitroso-p-toluene-sulfonamide. J. Phys. Org. Chem. 13, 664–669 (2000)

    Article  Google Scholar 

  22. Dharmawardana, U.R., Cristian, S.D., Tucker, E.E., Taylor, R.W., Scamchron, J.F.: A surface-tension method for determining binding constants for cyclodextrin inclusion complex of ionic surfactants. Langmuir 9, 2258–2263 (1993)

    Article  CAS  Google Scholar 

  23. Tominaga, T., Hachisu, D., Kamado, M.: Interactions between the tetradecyltrimehylammonium ion and alpha-cyclodextrin, beta-cyclodextrin, and gamma-cyclodextrin in water as studied by a surfactant-selective electrode. Langmuir 10, 4676–4680 (1994)

    Article  CAS  Google Scholar 

  24. Benko, M., Kiraly, Z.: Thermodynamics of inclusion complex formation of β-cyclodextrin with a variety of surfactants differing in the nature of head group. J. Chem. Thermodynamics 54, 211–216 (2012)

    Article  CAS  Google Scholar 

  25. Qu, X.K., Zhu, L.Y., Li, L., Wei, X.L., Liu, F., Sun, D.Z.: Host-guest complexation of β-, γ-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solution. J. Solution Chem. 36, 643–650 (2007)

    Article  CAS  Google Scholar 

  26. Junquera, E., Pena, L., Aicart, E.: A conductimetric study of the interaction of beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin with dodecyltrimethylammonium bromide in water solution. Langmuir 11, 4685–4690 (1995)

    Article  CAS  Google Scholar 

  27. Junquera, E., Benito, J.G., Pena, L., Aicart, E.: Encapsulation processes of dodecyltrimethylammonium bromide into the β-cyclodextrin or 2,6-di-o-methyl-β -cyclodextrin cavities from speed of sound data. J. Colloid Interface Sci. 163, 355–361 (1994)

    Article  CAS  Google Scholar 

  28. Lin, L.R., Jiang, Y.B., Du, X.Z., Huang, X.Z., Chen, G.Z.: A study of the properties of the 1:1 inclusion complex of β-cyclodextrin with cetyltrimethylammonium bromide. Chem. Phys. Lett. 266, 358–362 (1997)

    Article  CAS  Google Scholar 

  29. Junquera, E., Pena, L., Aicart, E.: Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide. A characterization study in the presence and absence of hydroxypropyl-β-cyclodextrin. Langmuir 13, 219–224 (1997)

    Article  CAS  Google Scholar 

  30. Mehta, S.K., Bhasin, K.K., Dham, S., Singla, M.L.: Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence of α-, β-, HPβ- and γ-cyclodextrins. J. Colloid Interface Sci. 321, 442–451 (2008)

    Article  CAS  Google Scholar 

  31. Beiginejad, H., Bagheri, A.: Yekta Safdari L., Nojini, Z. B.: Thermodynamic studies of inclusion complex formation between alkylpyridinium chlorides and β-cyclodextrin using conductometric method. J. Incl. Phenom. Macrocycl. Chem. 67, 247–252 (2010)

    Article  CAS  Google Scholar 

  32. Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Determination of the complexation constants between alkylpyridinium bromide and alpha- and beta-cyclodextrins using electromotive force methods. Langmuir 10, 3328–3331 (1994)

    Article  CAS  Google Scholar 

  33. Sehgal, P., Sharma, M., Wimmer, R.: Larsen Lambertsen, K., Otzen, D. E.: Interactions between anionic mixed micelles and α-cyclodextrin and their inclusion complexes: conductivity, NMR and fluorescence study. Colloid Polym. Sci. 284, 916–926 (2006)

    Article  CAS  Google Scholar 

  34. Dorrego, B., Garcia-Rio, L., Hervés, P., Leis, R.J., Mejuto, J.C., Pérez-Juste, J.: Changes in the fraction of uncomplexed cyclodextrin in equilibrium with the micellar system as a result of balance between micellization and cyclodextrin-surfactant complexation. J. Phys. Chem. B 105, 4912–4920 (2001)

    Article  CAS  Google Scholar 

  35. Dorrego, A.B., Garcia-Rio, L., Hervés, P., Leis, J.R., Mejuto, J.C., Pérez-Juste, J.: Micellization versus cyclodextrin-surfactant complexation. Angew. Chem. Int. Ed. 39, 2945–2948 (2000)

    Article  CAS  Google Scholar 

  36. Cabaliero-Lago, C., Garcia-Rio, L., Hervés, P., Mejuto, J.C., Pérez-Juste, J.: In search of fully uncomplexed cyclodextrin in the presence of micellar aggregates. J. Phys. Chem. B 110, 15831–15838 (2006)

    Article  Google Scholar 

  37. Petek, A., Krajnc, M., Petek, A.: The role of intermolecular interactions in the micellization process of alkyltrimethylammonium bromides in water. Tenside Surf. Det. 53, 56–63 (2016)

    Article  CAS  Google Scholar 

  38. Bai, Y., Xu, G.Y., Pang, J.Y., Sun, H.Y., Hao, A.Y., Xin, X., et al.: Comparative study on the effect of NaBr on the interaction between alkyltrimethylammonium bromide and β-cyclodextrin. J. Dispers. Sci. Technol. 31, 945–953 (2010)

    Article  CAS  Google Scholar 

  39. Gonzalez-Gaitano, G., Crespo, A., Tardajos, G.: Thermodynamic investigation (volume and compressibility) of the systems β-cyclodextrin + n-alkyltrimethylammonium bromides + water. J. Phys. Chem. B 104, 1869–1879 (2000)

    Article  CAS  Google Scholar 

  40. Guo, R., Zhu, X.J., Guo, X.: The effect of β-cyclodextrin on the properties of cetyltrimethylammonium bromide micelles. Colloid Polym. Sci. 281, 876–881 (2003)

    Article  CAS  Google Scholar 

  41. Bakshi, M.S.: Cationic mixed micelles in the presence of β-cyclodextrin: a host-guest study. J. Colloid Interf. Sci. 227, 78–83 (2000)

    Article  CAS  Google Scholar 

  42. Palepu, R., Reinsborough, V.C.: Surfactant-cyclodextrin interactions by conductance measurements. Can. J. Chem. 66, 325–328 (1988)

    Article  CAS  Google Scholar 

  43. Jiang, B-y, Du, J., Cheng, S-q, Pan, J-w, et al.: Effects of cyclodextrins as additives on surfactant CMC. J. Disper. Sci. Technol. 24, 63–66 (2003)

    Article  CAS  Google Scholar 

  44. Ghoreiski, S.M., Behpour, M., Golestaneh, M.: Study of inclusion complex formation between a cationic surfactant, two cyclodextrins and a drug. J. Incl. Phenom. Macrocycl. Chem. 62, 279–284 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by “The doctoral program is funded in part by the European Union through the European Social Fund. Co-financing is carried out within the framework of the Operational Programme Human Resources Development for the period 2007–2013, Development Priority 1, Promoting entrepreneurship and adaptability; policies priority_1. 3: Scholarship schemes. “ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Petek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petek, A., Krajnc, M. & Petek, A. Study of host–guest interaction between ß-cyclodextrin and alkyltrimethylammonium bromides in water. J Incl Phenom Macrocycl Chem 86, 221–229 (2016). https://doi.org/10.1007/s10847-016-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0656-6

Keywords

Navigation