Skip to main content
Log in

Adenine nucleotide recognition by spiramycin and some of its aromatic derivatives

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Association of adenine nucleotides with the macrocyclic antibiotic Spiramycin and two of its aromatic derivatives was studied by potentiometric titrations, 1H and 31P NMR spectrometry and molecular modelling. Spiramycin binds adenine nucleotides with K ≈ 103–104 M−1 and selectivity for ADP over ATP or AMP. The introduction of aromatic moieties reduces the strength of the binding but, selectivity order changes to ATP > ADP > AMP. Molecular models showed that complexes are mainly stabilized by electrostatic interactions between the protonated amino groups of the receptors and the phosphate groups of the nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lara, K.O., Godoy-Alcántar, C., Rivera, I.L., Eliseev, A.V., Yatsimirsky, A.K.: Complexation of dicarboxylates and phosphates by a semisynthetic alkaloid-based cyclophane in water. J. Phys. Org. Chem. 14, 453–462 (2001)

    Article  CAS  Google Scholar 

  2. Godoy-Alcántar, C., Rivera, I.L., Yatsimirsky, A.K.: Anion recognition by thiostrepton. Bioorg. Med. Chem. Lett. 11, 651–654 (2001)

    Article  Google Scholar 

  3. Godoy-Alcántar, C., Medrano, F., Yatsimirsky, A.K.: Affinity and enantioselectivity of Rifamycin SV towards low molecular weight compounds. J. Incl. Phenom. Macrocycl. Chem. 63, 347–354 (2009)

    Article  Google Scholar 

  4. Fuentes-Martínez, Y., Godoy-Alcántar, C., Medrano, F., Dikiy, A., Yatsimirsky, A.K.: Nucleotide recognition by protonated aminoglycosides. Supramol. Chem. 22, 212–220 (2010)

    Article  Google Scholar 

  5. Omura, S.: Macrolide antibiotics: chemistry, biology, and practice. Academic press, Cambridge (2002)

    Google Scholar 

  6. Johansson, A.: Automatic titration by stepwise addition of equal volumes of titrant. Part I. Basic principles. Analyst. 95, 535–540 (1970)

    CAS  Google Scholar 

  7. Benkert, T., Franke, K.: SciDAVis Version 0.2.4. http://scidavis.sourceforge.net

  8. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  9. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  10. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001)

    Article  CAS  Google Scholar 

  11. Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)

    Article  CAS  Google Scholar 

  12. MacroModel, version 11.1 Schrödinger, LLC: New York. https://www.schrodinger.com/citations/ (2008)

  13. Mutak, S., Marvsic, N., Kramaric, M.D., Pavlovic, D.: Semisynthetic macrolide antibacterials derived from tylosin. synthesis and structure-activity relationships of novel desmycosin analogues. J. Med. Chem. 47, 411–431 (2004)

    Article  CAS  Google Scholar 

  14. Bazzicalupi, C., Biagini, S., Bianchi, A., Faggi, E., Gratteri, P., Mariani, P., Pina, F., Valtancoli, B.: Binding of H+ and Zn (II) ions with a new fluorescent macrocyclic phenanthrolinophane. Dalton Trans. 39, 10128–10136 (2010)

    Article  CAS  Google Scholar 

  15. Qiang, Z., Adams, C.: Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38, 2874–2890 (2004)

    Article  CAS  Google Scholar 

  16. Determination of pKa values of active pharmaceutical ingredients: Babic, S., Horvat, A.J., Pavlovi’c, D.M., Ka\vstelan-Macan, M. TrAC Trends Anal. Chem. 26, 1043–1061 (2007)

    Article  Google Scholar 

  17. Sanli, S., Sanli, N., Alsancak, G.: Spectrophotometric determination of acidity constants of some macrolides in acetonitrile-water binary mixtures. Acta Chim. Slov. 57, 980–987 (2010)

    CAS  Google Scholar 

  18. Anderegg, G., Popov, K., Pregosin, P.S.: Nitrogen-NMR Studies on the Protonation of 2-(Aminomethyl) pyridine and Tris [(2-pyridyl) methyl] amine. Helv. Chim. Acta 69, 329–332 (1986)

    Article  CAS  Google Scholar 

  19. Romary, J.K., Barger, J., Bunds, J.E.: New multidentate. alpha.-pyridyl ligand. Coordination of bis (2-pyridylmethyl) amine with transition metal ions. Inorg. Chem. 7, 1142–1145 (1968)

    Article  CAS  Google Scholar 

  20. Major, D.T., Laxer, A., Fischer, B.: Protonation studies of modified adenine and adenine nucleotides by theoretical calculations and 15N NMR. J. Org. Chem. 67, 790–802 (2002)

    Article  CAS  Google Scholar 

  21. Albelda, M.T., Frías, J.C., García-España, E., Luis, S.V.: Studies on the interaction of phosphate anions with N-functionalised polyaza [n] paracyclophanes: the role of N-methylation. Org. Biomol. Chem. 2, 816–820 (2004)

    Article  CAS  Google Scholar 

  22. Aguilar, J.A., Celda, B., Fusi, V., García-España, E., Luis, S.V., Martínez, M.C., Ramírez, J.A., Soriano, C., Tejero, R.: Structural characterization in solution of multifunctional nucleotide coordination systems. J. Chem. Soc. Perkin Trans. 2, 1323–1328 (2000)

    Article  Google Scholar 

  23. Kubik, S., Reyheller, C., Stüwe, S.: Recognition of anions by synthetic receptors in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 52, 137–187 (2005)

    Article  CAS  Google Scholar 

  24. Arranz-Mascarós, P., Bazzicalupi, C., Bianchi, A., Giorgi, C., Godino-Salido, M.L., Gutiérrez-Valero, M.D., Lopez-Garzón, R., Valtancoli, B.: Binding and recognition of AMP, ADP, ATP and related inorganic phosphate anions by a tren-based ligand containing a pyrimidine functionality. New J. Chem. 35, 1883–1891 (2011)

    Article  Google Scholar 

  25. Fuentes-Martinez, J., Gutiérrez-Rodriguez, D., Garcia, E., Rivera-Márquez, K., Medrano, F., Torres-Angeles, O., Castillo-Vargas, E., Duque, M.B., Godoy-Alcantar, C.: Streptomycin hydrazone derivatives: synthesis and molecular recognition in aqueous solution. Nat. Prod. Commun. 9, 1449–1455 (2014)

    CAS  Google Scholar 

  26. Albright, P.S., Gosting, L.J.: Dielectric constants of the methanol-water system from 5 to 55° 1. J. Am. Chem. Soc. 68, 1061–1063 (1946)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.I. Rivera Márquez glad CONACyT for her doctoral fellowship. We acknowledge LANEM by the use of the spectrometric instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Medrano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Márquez, K.I., Godoy-Alcántar, C., Claudio-Catalán, M.Á. et al. Adenine nucleotide recognition by spiramycin and some of its aromatic derivatives. J Incl Phenom Macrocycl Chem 86, 211–219 (2016). https://doi.org/10.1007/s10847-016-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0654-8

Keywords

Navigation