Skip to main content
Log in

Influence of the substitution of β-cyclodextrins by pyridinium groups on the complexation of adamantane derivatives

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A series of positively charged β-cyclodextrin derivatives have been synthesized by selective functionalization of β-cyclodextrin at the primary rim with pyridinium groups. Characterisation of the modified β-cyclodextrin was done by elementary analysis, FTIR, 1H and 13C NMR spectroscopy. The inclusion complexation of adamantane derivatives (Adamantan-1-ol: AdOH and Sodium adamantane-1-carboxylate: AdCOONa+) by the host β-cyclodextrin and its grafted pyridinium derivatives has been investigated using 1H NMR spectroscopy. The stoichiometry of the complexes was found to be in 1:1 (adamantane:β-cyclodextrin) ratio. 1H chemical shift changes of adamantane protons were used to calculate the apparent binding constants of the complexes. Two dimentional NOESY experiments were performed to allow the mode of binding. Mono- and per-charged β-cyclodextrin showed an enhancement of inclusion binding ability towards the sodium adamantane-1-carboxylate guest. The origin of the observed enhancement in the stability of the complexes was ascribed to electrostatic interaction between carboxylate ion and charged pyridinium groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szejtli, J.: Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest (1982)

    Google Scholar 

  2. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceu-tical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  3. Sumit, S.V., Apeksha, K., Vasanti, S., Atul, P.S.: Influence of auxiliary agents on solubility and dissolution profile of repaglinide with hydroxypropyl-β-cyclodextrin: inclusion complex formation and its solid-state characterization. J. Incl. Phenom. Macrocycl. Chem. 83, 239–250 (2015)

    Article  Google Scholar 

  4. Yutaka, I., Takashi, Y., Shota, W., Isamu, M., Ikuo, K.: Examination of intermolecular interaction as a result of cogrinding actarit and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 78, 457–464 (2014)

    Article  Google Scholar 

  5. Ogawa, N., Takahashi, C., Yamamoto, H.: Physicochemical characterization of cyclodextrin-drug interactions in the solid state and the effect of water on these interactions. J. Pharm. Sci. 104(3), 942–954 (2015)

    Article  CAS  Google Scholar 

  6. Zhang, J.X., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65(9), 1215–1233 (2013)

    Article  CAS  Google Scholar 

  7. French, D., Levine, M.L., Pazur, J.H., Norberg, E.: Studies on the Schardinger dextrins. The preparation and solubility characteristics of α-, β- and γ-dextrins. J. Am. Chem. Soc. 71, 353–358 (1949)

    Article  CAS  Google Scholar 

  8. Ashton, P.R., Boyd, S.E., Gattuso, G., Hartwell, E.Y., Koniger, R., Spencer, N., Stoddart, J.F.: A novel approach to the synthesis of some chemically-modified cyclodextrins. J. Org. Chem. 60, 3898–3903 (1995)

    Article  CAS  Google Scholar 

  9. Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl. 33, 803–822 (1994)

    Article  Google Scholar 

  10. Zain, N.N.M., Raoov, M., Bakar, N.K.A., Mohamad, S.: Cyclodextrin modified ionic liquid material as a modifier for cloud point extraction of phenolic compounds using spectrophotometry. J. Incl. Phenom. Macrocycl. Chem. 84, 137–152 (2016)

    Article  CAS  Google Scholar 

  11. Hbaieb, S., Kalfat, R., Chevalier, Y., Amdouni, N., Parrot-Lopez, H.: Influence of the substitution of β–cyclodextrins by cationic groups on the complexation of organic anions. Mater. Sci. Eng. C 28, 697–704 (2008)

    Article  CAS  Google Scholar 

  12. Galaverna, G., Corradini, R., Dossena, A., Marcelli, R.: Histamine-modified cationic β-cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis 20(13), 2619–2629 (1999)

    Article  CAS  Google Scholar 

  13. Frbdkric, L., Carole, G., Pierre, G., Youssef, B., Hervé, G.: Use of a zwitterionic cyclodextrin as a chiral agent for the separation of enantiomers by capillary electrophoresis. Electrophoresis 18, 891–896 (1997)

    Article  Google Scholar 

  14. Hansjorg, J., Markus, J., Volker, S.: Electrokinetic chromatography employing an anionic and a cationic β-cyclodextrin derivative. Electrophoresis 18, 897–904 (1997)

    Article  Google Scholar 

  15. Abdul, R.K., Peter, F., Keith, J.S., Valerian, T.D.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)

    Article  Google Scholar 

  16. Zita, S., Ágnes, B.B., János, R.: pH-dependent complex formation of amino acids with β-cyclodextrin and quaternary ammonium β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 73, 199–210 (2012)

    Article  Google Scholar 

  17. Martin, P., Simona, H., Jindřich, J.: A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanentpositive charges. Beilstein J. Org. Chem. 10, 1390–1396 (2014)

    Article  Google Scholar 

  18. Daniel, G., Jorge, B., Maria, J.P., Mercedes, N., Wajih, A.: Host–guest complexation studied by fluorescence correlation spectroscopy: adamantane-cyclodextrin inclusion. Int. J. Mol. Sci. 11, 173–188 (2010)

    Article  Google Scholar 

  19. Gao, J., Guo, Z.K., Su, F.J., Gao, L., Pang, X.H., Cao, W., Du, B., Wei, Q.: Ultrasensitive electrochemical immunoassay for CEA through host–guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core–shell nanoparticles with adamantinemodified antibody. Biosens. Bioelectron. 63(15), 465–471 (2015)

    Article  CAS  Google Scholar 

  20. Shantanu, G.K., Zdenˇka, P., Michal, R., Lenka, D., Robert, V.: Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit [7] uril and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 84, 11–20 (2016)

    Article  Google Scholar 

  21. Keivan, S., Ellen, E.M., Mark, W., Lee, J.: Association constant of β-cyclodextrin with carboranes, adamantane, and their derivatives using displacement binding technique. J. Incl. Phenom. Macrocycl. Chem. 83, 159–166 (2015)

    Article  Google Scholar 

  22. John, S.W.: Medicinal properties of adamantane derivatives. J. Chem. Educ. 50(71), 780–781 (1973)

    Google Scholar 

  23. Agnieszka, L.C., Jerzy, S., Waclaw, K.: Comparative proton nuclear magnetic resonance studies of amantadine complexes formed in aqueous solutions with three major cyclodextrins. J. Pharm. Sci. 103, 274–282 (2014)

    Article  Google Scholar 

  24. Harries, D., Rau, D.C., Parsegian, V.A.: Solutes probe hydration in specific association of cyclodextrin and adamantane. J. Am. Chem. Soc. 127, 2184–2190 (2005)

    Article  CAS  Google Scholar 

  25. Ying-Ming, Z., Yong, C., Zhi-Qiang, L., Nan, L., Yu, L.: Quinolinotriazole-β-cyclodextrin and its adamantanecarboxylic acid complex as efficient water-soluble fluorescent Cd2+ sensors. Bioorg. Med. Chem. 18, 1415–1420 (2010)

    Article  Google Scholar 

  26. Birgit, B., Lennart, K., Coine, S.M.: 1H-NMR Studies of the inclusion complexes betweena-cyclodextrin and adamantane derivatives using both exchangeable hydroxy protons and non-exchangeable aliphatic protons. J. Incl. Phenom. Macrocycl. Chem. 50, 173–181 (2004)

    Article  Google Scholar 

  27. Yi-Che, S., Wan-Chun, C., Feng-Chih, C.: Preparation and characterization of polyseudorotaxanes based on adamantane-modified polybenzoxazines and β-cyclodextrin. Polymer 46, 1617–1623 (2005)

    Article  Google Scholar 

  28. Baâzaoui, M., Béjaoui, I., Kalfat, R., Amdouni, N., Hbaieb, S., Chevalier, Y.: Preparation and characterization of nanoparticles made fromamphiphilic mono and per-aminoalkyl-β-cyclodextrins. Colloid Surf. A 484, 365–376 (2015)

    Article  Google Scholar 

  29. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  30. Petter, R.C., Salek, J.S., Sikoski, C.T., Kumaravel, G., Lin, F.T.: Cooperative binding by aggregated mono-6-(alky1amino)-(β-cyclodextrins). J. Am. Chem. Soc. 112, 3860–3868 (1990)

    Article  CAS  Google Scholar 

  31. Gadelle, A., Defaye, J.: Selective halogenation at primary positions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomal-tooligosaccharides. Angew. Chem. Int. Ed. Engl. 30, 78–80 (1991)

    Article  Google Scholar 

  32. Artur, J.M.V., Olle, S.: The formation of host–guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 205, 156–176 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from French–Tunisian cooperation project (CMCU n°04S1207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhaira Hbaieb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béjaoui, I., Baâzaoui, M., Chevalier, Y. et al. Influence of the substitution of β-cyclodextrins by pyridinium groups on the complexation of adamantane derivatives. J Incl Phenom Macrocycl Chem 86, 79–92 (2016). https://doi.org/10.1007/s10847-016-0643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0643-y

Keywords

Navigation