Skip to main content
Log in

In silico design of calixarene-based arsenic acid removal agents

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Contamination of water resources with arsenic is a worldwide challenge with an important social impact. Development of adsorptive materials with high affinity and selectivity towards arsenic is an important and ongoing challenge. The aim of this work is to study calix[n]arenes with 4, 5, 6 and 8 rings, as well as COOH, C2H4OH, SO3H, t-Bu, PO3H2 and PO4H2, upper-rim functional groups through computational chemistry models as tailor-made sequestering agents using pentavalent arsenate species (H3AsO4, H2AsO4 and HAsO4 2−). Host–guest interaction energies (E int ) were determined using Density functional theory (DFT) calculations at the M06-2X/6-31G(d,p) level of theory carried out on host–guest adducts in order to find the most suitable candidates as extracting agents for these arsenate species. Hydrogen-bond donor groups such as SO3H, PO3H2 and the hypothetical calixarene with R = PO4H2 on the upper rim of calix[n]arenes are shown to be the most suitable functional groups for encapsulating these As(V) species under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Cornejo, L., Dias, L.E., Cirelli, A.F., Farfán, E.M., Garrido, S., Lorenzo, L., Morgada, M.E., Olmos-Márquez, M.A., Pérez-Carrera, A.: Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci. Total Environ. 429, 107–122 (2012)

    Article  CAS  Google Scholar 

  2. Ortega-Guerrero, A.: Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico. J. Hydrol. 284, 26–44 (2003)

    Article  CAS  Google Scholar 

  3. Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M.: Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015)

    Article  CAS  Google Scholar 

  4. Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)

    Article  CAS  Google Scholar 

  5. Redshaw, C.: Coordination chemistry of the larger calixarenes. Coord. Chem. Rev. 244, 45–70 (2003)

    Article  CAS  Google Scholar 

  6. Shinkai, S., Mori, S., Koreishi, H., Tsubaki, T., Manabe, O.: Hexasulfonated calix[6larene derivatives: a new class of catalysts, surfactants, and host molecules. J. Am. Chem. Soc. 108, 2409–2416 (1986)

    Article  CAS  Google Scholar 

  7. Shinkai, S., Koreishi, H., Ueda, K., Arimura, T., Manabe, O.: Molecular design of calixarene-based uranophiles which exhibit remarkably high stability and selectivity. J. Am. Chem. Soc. 109, 6371–6376 (1987)

    Article  CAS  Google Scholar 

  8. Barroso-Flores, J., Silaghi-Dumitrescu, I., Petrar, P.M., Kunsági-Máté, S.: Ab initio calculations of electronic interactions in inclusion complexes of calix- and thiacalix[n]arenes and block s cations. J. Incl. Phenom. Macrocycl. Chem. 75, 39–46 (2013)

    Article  CAS  Google Scholar 

  9. Chennakesavulu, K., Raju, G.B., Prabhakar, S.: Studies on the adsorption of arsenic on calix[6]arene. J. Phys. Org. Chem. 23, 723–729 (2010)

    CAS  Google Scholar 

  10. Sayin, S., Ozcan, F., Yilmaz, M.: Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 178, 312–319 (2010)

    Article  CAS  Google Scholar 

  11. Qureshi, I., Memon, S., Yilmaz, M.: An excellent arsenic(V) sorption behavior of p-tert-butylcalix[8]areneoctamide impregnated resin. Comptes Rendus Chim. 13, 1416–1423 (2010)

    Article  CAS  Google Scholar 

  12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J. V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 09, Revision B.01. Gaussian Inc. (2009)

  13. Glendening, A.E. Reed, J.E. Carpenter, and F.W.: NBO Version 3.1

  14. Weinhold, F.: Natural Bond Orbital Methods. In: Schleyer, P., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., Schreiner, P.R. (eds.) Encyclopedia of Computational Chemistry, pp. 1792–1811. Wiley, Madison (2002)

    Google Scholar 

  15. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UA–CONACYT (University of Arizona—Consejo Nacional de Ciencia y Tecnología) Binational Consortium for the Regional Scientific Development and Innovation for the financial support provided. The authors wish to thank Miss Citlallit Martínez for keeping our computational facilities in high quality conditions. Also to Dirección General de Tecnologías de la Información y Cómputo (DGTIC—UNAM) for granting access to their supercomputing facilities known as Miztli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Barroso-Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondragón-Solórzano, G., Sierra-Álvarez, R., López-Honorato, E. et al. In silico design of calixarene-based arsenic acid removal agents. J Incl Phenom Macrocycl Chem 85, 169–174 (2016). https://doi.org/10.1007/s10847-016-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0617-0

Keywords

Navigation