Skip to main content
Log in

Analysis of computational models of β-cyclodextrin complexes: structural studies of morniflumate hydrochloride and β-cyclodextrin complex in aqueous solution by quantitative ROESY analysis

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Complexation of morniflumate hydrochloride (MOR) with β-cyclodextrin (β-CD) in aqueous solution was studied. Structure of the MOR-β-CD inclusion complex was obtained by a combination of 1H NMR and molecular modeling studies. Computational models obtained by molecular mechanics and molecular dynamics were analyzed for their atom-accuracy. ROESY crosspeak intensities calculated from intermolecular interproton distances were compared with experimental intensities. The results demonstrate that comparison of calculated and experimental intensities is a good criterion to determine accuracy of the structure of CD complexes. Moreover, it is also demonstrated that ROESY experiment, with longer mixing time when initial rate approximation condition is not valid, can be used for quantitative purpose if intensity ratios, instead of absolute intensities, are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  2. Schneider, H.-J.: Mechanisms of molecular recognition: investigations of organic host-guest complexes. Angew. Chem. Int. Ed. Engl. 30, 1417–1436 (1991)

    Article  Google Scholar 

  3. Ariga, K., Kunitake, T.: Supramolecular Chemistry—Fundamentals and Applications Advanced Textbook. Springer, New York (2006)

    Google Scholar 

  4. Pérez-Cruz, F., Aguilera-Venegas, B., Lapier, M., Sobarzo-Sánchez, E., Villares, E.U., Olea-Azar, C.: Host-guest interaction between new nitrooxoisoaporphine and β-cyclodextrins: synthesis, electrochemical, electron spin resonance and molecular modeling studies. Spectrochim. Acta Mol. Biomol. Spectros. 102, 226–234 (2013)

    Article  Google Scholar 

  5. Schneider, H.-J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  6. Szejtli, J.: Past, present and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  7. Pessine, F.B.T., Calderini, A., Alexandrino, G.L.: Review: cyclodextrin inclusion complexes probed by NMR techniques. In: Kim, D.H. (ed.) Magnetic Resonance Spectroscopy, pp. 237–264. InTec, Rijeka (2012)

    Google Scholar 

  8. Karpkird, T., Wanichweacharungruang, S.: Synthesis and photostability of methoxycinnamic acid modified cyclodextrins. J. Photochem. Photobiol., A 212, 56–61 (2010)

    Article  CAS  Google Scholar 

  9. Dodziuk, H.: Cyclodextrins and Their Complexes. Chemistry, Analytical Methods, Applications. Wiley-VCH, London (2006)

    Book  Google Scholar 

  10. Butts, C.P., Jones, C.R., Towers, E.C., Flynn, J.L., Appleby, L., Barron, N.J.: Interproton distance determinations by NOE—surprising accuracy and precision in a rigid organic molecule. Org. Biomol. Chem. 9, 177–184 (2011)

    Article  CAS  Google Scholar 

  11. Ali, S.M., Shamim, S.: Complexation of (RS)-benzhexol with β-cyclodextrin: structure elucidation diastereomeric complexes by use of quantitative 1H–1H ROESY and computational methods. Monatsh. Chem. 146, 283–290 (2015)

    Article  CAS  Google Scholar 

  12. Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014)

    Article  CAS  Google Scholar 

  13. Demarco, P.V., Thakkar, A.L.: Cyclohepta-amylose inclusion complexes. A proton magnetic resonance study. J. Chem. Soc., Chem. Commun. 1, 2–4 (1970)

    Article  Google Scholar 

  14. Leyva, E., Moctezuma, E., Strouse, J., García-Garibay, M.A.: Spectrometric and 2D NMR studies on the complexation of chlorophenols with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 39, 41–46 (2001)

    Article  CAS  Google Scholar 

  15. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  16. Scott, R.L.: Some comments on the Benesi-Hildebrand equation. Recl. Trav. Chim. Pays-Bas 75, 787–789 (1956)

    Article  CAS  Google Scholar 

  17. Neuhaus, D., Williamson, M.P.: The Nuclear Overhauser Effect in Structural and Conformational Analysis. Wiley-VCH, London (1989)

    Google Scholar 

  18. Allinger, N.L.: Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  CAS  Google Scholar 

  19. Zabel, V., Saenger, W., Mason, S.A.: Neutron diffraction study of the hydrogen bonding in β-cyclodextrin undecahydrate at 120 K: from dynamic flip-flops to static homodromic chains. J. Am. Chem. Soc. 108, 3664–3673 (1986)

    Article  CAS  Google Scholar 

  20. Jingye, L., Deyue, Y., Qun, C.: Preparation and characterization of the crystalline inclusion complexes between cyclodextrins and poly(1,3-dioxolane). Sci. China, Ser. B 45, 73–83 (2002)

    Google Scholar 

  21. Kohler, J.E.H., Grczelschak-Mick, N.: The β-cyclodextrin/benzene complex and its hydrogen bond—a theoretical study using molecular dynamics, quantum mechanics and COSMO-RS. Beilstein J. Org. Chem. 9, 118–134 (2013)

    Article  Google Scholar 

  22. Andersen, N.H., Eaton, H.L., Lai, X.: Quantitative small molecule NOESY. A practical guide for derivation of cross-relaxation rates and internuclear distances. Magn. Reson. Chem. 27, 515–528 (1989)

    Article  CAS  Google Scholar 

  23. Jones, C.R., Butts, C.P., Harvey, J.N.: Accuracy in determining interproton distances using nuclear overhauser effect data from a flexible molecule. Beilstein J. Org. Chem. 7, 145–150 (2011)

    Article  CAS  Google Scholar 

  24. Macura, S., Farmer II, B.T., Brown, L.R.: An improved method for the determination of cross-relaxation rates from NOE Data. J. Magn. Reson. 70, 493–499 (1986)

    CAS  Google Scholar 

Download references

Acknowledgments

Morniflumate hydrochloride and β-cyclodextrin were very kindly provided by Amoli Organics Ltd, India, and Geertrui Haest, Cerestar Cargill, Belgium, respectively. Shazia Shamim is thankful to UGC, Government of India, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mashhood Ali.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Shamim, S. Analysis of computational models of β-cyclodextrin complexes: structural studies of morniflumate hydrochloride and β-cyclodextrin complex in aqueous solution by quantitative ROESY analysis. J Incl Phenom Macrocycl Chem 83, 19–26 (2015). https://doi.org/10.1007/s10847-015-0534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0534-7

Keywords

Navigation