Skip to main content
Log in

Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the present study, simultaneous improvement in dissolution profile and content uniformity of Lafutidine (LAF) has been achieved through co-inclusion in urea. LAF, a recently reported histamine H2 receptor antagonist used in the treatment of peptic ulcer, exhibits low aqueous solubility and dissolution rate limited absorption leading to its poor bioavailability. LAF is a potent and normally non-complexing substituted cyclic organic compound. Urea, a well known host for forming inclusion complexes with linear organic compounds was successfully employed for co-inclusion of LAF in the presence of readily complexing guest (RCG). The modified Zimmerschied calorimetric method was employed for the estimation of the minimum amount of RCG required for co-inclusion of lafutidine in urea. The formation of lafutidine urea co-inclusion complexes (LUCIC) was confirmed by DSC, FTIR, XRD and 1H-NMR studies. LUCIC complexes containing varying proportions of guests were prepared and subjected to thermal analysis using DSC. The thermal data was subjected to the regression analysis to study the influence of the relative molar proportion of RCG on the heat of decomposition of LUCIC. Study revealed good content uniformity of lafutidine in LUCIC. In vitro dissolution rate studies demonstrated steep improvement in dissolution profile of LAF—a BCS class II drug. The resulting dissolution data was subjected to various release kinetic models. Studies reveal that urea co-inclusion complex formation may be a promising technique for the formulation of potent poorly soluble drugs into immediate release products with improved content uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kurata, J.H., Nogawa, A.: Meta-analysis of risk factors for peptic ulcer: nonsteroidal anti-inflammatory drugs, Helicobacter pylori, and smoking”. J. Clin. Gastroenterol. (1997). doi:10.1097/00004836-199701000-00002

    Google Scholar 

  2. Onodera, S., Tanaka, M., Aoyama, M., Arai, Y., Inaba, N., Suzuki, T., Nishizawa, A., Shibata, M., Sekine, Y.: Antiulcer effect of lafutidine on indomethacin-induced gastric antral ulcers in refed rats. Jpn. J. Pharmacol. 80(3), 229–235 (1999)

    Article  CAS  Google Scholar 

  3. Higuchi, K., Watanabe, T., Tominaga, K., Shiba, M., Nakagawa, K., Uno, H., Kitada, K., Satoh, H., Chono, S., Oshitani, N., Fujiwara, Y., Arakawa, T.: Lafutidine can improve the quality of gastric ulcer healing in humans: a randomized, controlled, multicenter trial. Inflammopharmacol. 14(5–6), 226–230 (2006)

    Article  CAS  Google Scholar 

  4. Devault, K.R., Castell, D.O.: Updated guidelines for the diagnosis and treatment of gastroesophageal reflux disease. The practice parameters committee of the American college of gastroenterology. Am. J. Gastroenterol. 94(6), 1434–1442 (1999)

    Article  CAS  Google Scholar 

  5. Onodera, S., Nishida, K., Takeuchi, K.: Unique Profile of Lafutidine, a novel histamine H2-receptor antagonist—mucosal protection throughout gastrointestinal tract mediated by capsaicin-sensitive afferent neurons. Drug Design Rev.—Online 1(2), 133–144 (2004)

    Article  CAS  Google Scholar 

  6. Yamagishi, H., Koike, T., Ohara, S., Horii, T., Kikuchi, R., Kobayashi, S., Abe, Y., Iijima, K., Imatani, A., Suzuki, K., Hishinuma, T., Goto, J., Shimosegawa, T.: Stronger inhibition of gastric acid secretion by lafutidine, a novel H2 receptor antagonist, than by the proton pump inhibitor lansoprazole. World J. Gastroenterol. (2008). doi:10.3748/wjg.14.2406

    Google Scholar 

  7. Uesugi, T., Mikawa, K., Nishina, K., Morikawa, O., Takao, Y., Obara, H.: The efficacy of lafutidine in improving preoperative gastric fluid property: a comparison with ranitidine and rabeprazole. Anesth. Analg. (2002). doi:10.1097/00000539-200207000-00025

    Google Scholar 

  8. Romero, C.M., Fass, R.: New and future drug development for gastroesophageal reflux disease. J. Neurogastroenterol. Motil. (2014). doi:10.5056/jnm.2014.20.1.6

    Google Scholar 

  9. Iida, H., Inamori, M., Nozaki, Y., Endo, H., Hosono, K., Akiyama, T., Sakamoto, Y., Takahashi, H., Koide, T., Tokoro, C., Abe, Y., Nakajima, A.: Early effects of oral administration of lafutidine with mosapride compared with lafutidine alone on intragastric pH values. BMC Gastroenterol. (2009). doi:10.1186/1471-230X-9-52

    Google Scholar 

  10. Nozawa, Y., Nishihara, K., Akizawa, Y., Orimoto, N., Nakano, M., Uji, T., Ajioka, H., Kanda, A., Matsuura, N., Kiniwa, M.: Lafutidine inhibits Helicobacter pylori-induced interleukin-8 production in human gastric epithelial cells. J. Gastroenterol. Hepatol. 19(5), 506–511 (2004)

    Article  CAS  Google Scholar 

  11. Shimatani, T., Inoue, M., Kuroiwa, T., Xu, J., Nakamura, M., Tazuma, S., Ikawa, K., Morikawa, N.: Lafutidine, a newly developed antiulcer drug, elevates postprandial intragastric pH and increases plasma calcitonin gene-related peptide and somatostatin concentrations in humans: comparisons with famotidine. Dig. Dis. Sci. 51(1), 114–120 (2006)

    Article  CAS  Google Scholar 

  12. Ikawa, K., Shimatani, T., Hayato, S., Morikawa, N., Tazuma, S.: Pharmacokinetic and pharmacodynamic properties of lafutidine after postprandial oral administration in healthy subjects: comparison with famotidine. Biol. Pharm. Bull. 30(5), 1003–1006 (2007)

    Article  CAS  Google Scholar 

  13. Dewan, B., Shah, D.: A study to evaluate the symptomatic efficacy and safety of Lafaxid TM (lafutidine 10 mg) in patients with acid peptic disorders in India. Br. J. Med. Med. Res. 3(4), 821–831 (2013)

    Article  Google Scholar 

  14. Sugiyama, T., Hatanaka, Y., Iwatani, Y., et al.: Lafutidine facilitates calcitonin gene-related peptide (CGRP) nerve-mediated vasodilation via vanilloid-1-receptors in rat mesenteric resistance arteries. J. Pharmacol. Sci. 106(3), 505–511 (2008)

    Article  CAS  Google Scholar 

  15. Ichikawa, T., Ishihara, K., Saigenji, K., Hotta, K.: Lafutidine-induced stimulation of mucin biosynthesis mediated by nitric oxide is limited to the surface mucous cells of rat gastric oxyntic mucosa. Life Sci. 62, 259–264 (1998)

    Article  Google Scholar 

  16. Onodera, S., Shibata, M., Tanaka, M., Inaba, N., Arai, Y., Aoyama, M., Lee, B., Yamaura, T.: Gastroprotective mechanism of lafutidine, a novel anti-ulcer drug with histamine H2-receptor antagonistic activity. Arzneimittelforschung 49(6), 519–526 (1999)

    CAS  Google Scholar 

  17. Tanaka, M., Banba, M., Joko, A., Moriyama, Y.: Pharmacological and therapeutic properties of lafutidine (stogar and protecadin), a novel histamine H2 receptor antagonist with gastroprotective activity. Nihon Yakurigaku Zasshi 117(6), 377–386 (2001)

    Article  CAS  Google Scholar 

  18. Ichikawa, T., Ishihara, K., Saigenji, K., Hotta, K.: Effects of acid-inhibitory antiulcer drugs on mucin biosynthesis in the rat stomach. Eur. J. Pharmacol. 251, 107–111 (1994)

    Article  CAS  Google Scholar 

  19. Onodera, S., Tanaka, M., Aoyama, M., Arai, Y., Shibata, M., Yamaura, T., Ohnishi, H.: Effect of lafutidine, a novel antiulcer agent, on healing and relapse of acetic acid-induced gastric ulcer in rats. Nihon Yakurigaku Zasshi 111(3), 167–175 (1998)

    Article  CAS  Google Scholar 

  20. Akiba, Y., Kaunitz, J.D.: Lafutidine, a protective H2 receptor antagonist, enhances mucosal defense in rat esophagus. Dig. Dis. Sci. (2010). doi:10.1007/s10620-010-1379-y

    Google Scholar 

  21. Katsu, Y., Iguchi, S., Sone, H., Uchida, C., Kojima, T.: Benzimidazolone compounds having 5-HT4 receptor agonistic activity. US Patent 7776885 B2 published on Aug 17, (2010)

  22. Fule, R., Amin, P.: Development and evaluation of lafutidine solid dispersion via hot melt extrusion: investigating drug-polymer miscibility with advanced characterization. Asian J. Pharm. Sci. (2014). doi:10.1016/j.ajps.2013.12.004

    Google Scholar 

  23. Kanugo, A.Y., Chavhan, P., Potnis, V.V.: Melt evaporation method: a solid dispersion strategy to enhance solubility and dissolution of lafutidine. World J. Pharm. Res. 2(6), 2284–2300 (2013)

    Google Scholar 

  24. Madan, A.K.: Microencapsulation of low dose drugs. Ph.D. Thesis, IIT Delhi (1994)

  25. Madan, A.K., Grover, P.D.: A process for preparation of urea based inclusion compounds of vitamin A esters. Indian Patent 180627 filed on 20/01/1993 (1993)

  26. Madan, A.K., Bajaj, V.: A process for preparation of urea based inclusion compounds of vitamin E and its esters. Indian Patent 182620 filed on 24/10/1994 (1994)

  27. Pineiro, A., Banquy, X., Pérez-Casas, S., Tovar, E., García, A., Villa, A., Amigo, A., Mark, A.E., Costas, M.: On the characterization of host-guest complexes: surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant”. J. Phys. Chem. (2007). doi:10.1021/jp0688815

    Google Scholar 

  28. Frank, S.G.: Inclusion compounds. J. Pharm. Sci. 64, 1585–1604 (1975)

    Article  CAS  Google Scholar 

  29. Bengen, M.F.: Urea channel inclusion compounds. German Patent Application OZ 123438 filed on 18/03/1940 (1940)

  30. Marsh, K.L., Sims, G.K., Mulvaney, R.L.: Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biol. Fert. Soil. 42, 137–145 (2005)

    Article  CAS  Google Scholar 

  31. Clanton, D.C.: Non-protein nitrogen in range supplements. J. Anim. Sci. 47, 765–779 (1978)

    CAS  Google Scholar 

  32. U.S. EPA (Environmental Protection Agency). Toxicological review of urea. (CAS No. 57-13-6). In Support of Summary Information on the Integrated Risk Information System (IRIS). External peer review draft, Washington, DC; EPA/635/R-10/005A. Available online at http://www.epa.gov/iris/backgrd.html (Sept 2010). Accessed June 15, 2014

  33. Harris, K.D.M.: Meldola lecture: understanding properties of urea and thiourea inclusion compounds. Chem. Soc. Rev. 26, 279–289 (1997)

    Article  CAS  Google Scholar 

  34. Harris, K.D.M.: Fundamental and applied aspects of urea and thiourea inclusion compounds. Supramol. Chem. (2007). doi:10.1080/10610270600977706

    Google Scholar 

  35. Rujas, J.M., Harris, K.D.M., Desmedt, A., Guillaume, F.: In-situ monitoring of alkane-alkane guest exchange in urea inclusion compounds using confocal Raman microspectrometry. Mol. Cryst. Liq. Cryst. (2006). doi:10.1080/15421400600788633

    Google Scholar 

  36. Smith, A.E.: The crystal structure of urea-hydrocarbon complexes. Acta Crystallogr. 5, 224–235 (1952)

    Article  CAS  Google Scholar 

  37. Takemoto, K., Sonada, N.: Inclusion compounds of urea, thiourea and selenourea. In: Atwood, J.L., Davis, J.E.D., MacNicol, D.D. (eds.) Inclusion compounds, vol. 2, pp. 47–67. Academic Press, London (1984)

    Google Scholar 

  38. Bishop, R., Dance, I.G.: New type of helical inclusion networks. Top. Curr. Chem. 149, 139–188 (1988)

    Google Scholar 

  39. Harris, K.D.M., Thomas, J.M.: Structure aspects of urea inclusion compounds and their investigation by X-ray diffraction: a general discussion. J. Chem. Soc., Faraday Trans. 86, 2985–2996 (1990)

    Article  CAS  Google Scholar 

  40. Smart, S.S., Baghdagi, A.E., Gullaume, F., Harris, K.D.M.: Conformational and vibrational properties of α, ω-dihalogenoalkane/urea inclusion compounds: a Raman scattering investigation. J. Chem. Soc., Faraday Trans. 90, 1313–1322 (1994)

    Article  CAS  Google Scholar 

  41. Hollingsworth, M.D., Harris, K.D.M.: Urea inclusion compounds. In: Atwood, J.L., Davis, J.E.D., MacNicol, D.D., Vogtle, F. (eds.) Comprehensive Supramolecular Chemistry. Solid State Supramolecular Chemistry-Crystal Engineering, vol. 6, pp. 177–237. Pergamon Press, Oxford (1996)

    Google Scholar 

  42. Schiessler, R.W., Flitter, D.: Urea and thiourea adduction of C5-C42- Hydrocarbons. J. Am. Chem. Soc. 74, 1720–1723 (1954)

    Article  Google Scholar 

  43. Harris, K.D.M.: Urea inclusion compounds. In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry, vol. 2, pp. 1538–1549. Marcel Dekker, New York (2004)

    Google Scholar 

  44. Findlay, R.A.: Adductive crystallization. In: Schoen, H.M., Mcketta, J.J. (eds.) New Chemical Engineering Separation Techniques, pp. 31–257. Interscience Publishers, New York (1962)

    Google Scholar 

  45. Schlenk, W.: Urea addition of aliphatic compounds. Justus Liebigs Ann. Chem. 565, 204–240 (1949)

    Article  CAS  Google Scholar 

  46. Thakral, S., Madan, A.K.: Adduction of amiloride hydrochloride in urea through a modified technique for the dissolution enhancement. J. Pharm. Sci. 97(3), 1191–1201 (2008)

    Article  CAS  Google Scholar 

  47. Thakral, S., Madan, A.K.: Urea co-inclusion compounds of glipizide for the improvement of dissolution profile. J. Incl. Phenom. Macrocycl. Chem. (2008). doi:10.1007/s10847-007-9368-2

    Google Scholar 

  48. Thakral, S., Madan, A.K.: Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J. Pharm. Pharmacol. 59(11), 1501–1507 (2007)

    Article  Google Scholar 

  49. Thakral, S., Madan, A.K.: Urea co-inclusion compounds of 13 cis-retinoic acid for simultaneous improvement of dissolution profile, photostability and safe handling characteristics. J. Pharm. Pharmacol. 60(7), 823–832 (2008)

    Article  CAS  Google Scholar 

  50. Dhall, M., Madan, A.K.: Studies on urea co-inclusion complexes of simvastatin for improvement of pharmaceutical characteristics. J. Incl. Phenom. Macrocycl. Chem. (2014). doi:10.1007/s10847-014-0439-x

    Google Scholar 

  51. Stella, V., Haslam, J., Yata, N., Okada, H., Lindenbaum, S., Higuchi, T.: Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule. J. Pharm. Sci. 67, 1375–1377 (1978)

    Article  CAS  Google Scholar 

  52. Zimmerschied, W.J., Dinnerstein, R.A., Weitkamp, A.W., Marschner, R.F.: Crystalline adducts of urea with linear aliphatic compounds. Ind. Eng. Chem. 42, 1300–1306 (1950)

    Article  CAS  Google Scholar 

  53. Jadhav, K., Dhamecha, D., Tate, A., Tambe, H., Patil, M.B.: Application of UV spectrophotometric method for easy and rapid estimation of lafutidine in bulk and pharmaceutical formulation. Pharm. Methods. (2011). doi:10.4103/2229-4708.93398

    Google Scholar 

  54. Parekh, R.R., Patel, P.H., Patel, C.D., Patel, K.S., Patel, H.N.: Development and validation of UV spectrophotometric method for estimation of lafutidine in bulk and pharmaceutical dosage form. Int. J. Drug Dis. Res. 4(1), 325–329 (2012)

    CAS  Google Scholar 

  55. Komiyama, Y.: The Japanese Pharmacopoeia-Supplement I (JP XVI), The Ministry of Health, Labour and Welfare (MHLW) Ministerial notification No. 519, pp. 2438–2440 (2012)

  56. Fischer, P.H.H., McDowell, C.A.: The infrared absorption spectra of urea-hydrocarbon adduct. Can. J. Chem. 38, 187–193 (1960)

    Article  CAS  Google Scholar 

  57. Durie, R.A., Harrison, R.J.: Effect of urea-adduct formation and physical state on the infrared spectra of n-paraffin hydrocarbons. Spectrochem. Acta. 18, 1505–1514 (1962)

    Article  CAS  Google Scholar 

  58. Keller, W.E.: Evidence of planar structure of urea. J. Chem. Phys. 16, 1003–1004 (1948)

    Article  CAS  Google Scholar 

  59. McAdie, M.G.: Thermal decomposition of molecular complexes. Can. J. Chem. 41, 2144–2153 (1963)

    Article  CAS  Google Scholar 

  60. Thakral, S., Madan, A.K.: Topological models for prediction of heat of decomposition of urea inclusion compounds containing aliphatic endocytes. J. Incl. Phenom. Macrocycl. Chem. 60(1), 187–192 (2012)

    Google Scholar 

  61. White, M.A.: Origins of thermodynamic stability of urea; alkane inclusion compounds. Can. J. Chem. 76, 1695–1698 (1988)

    Article  Google Scholar 

  62. Radell, J., Connolly, J.W.: Urea complexes of partially fluorinated esters. J. Org. Chem. 25, 1202–1206 (1960)

    Article  Google Scholar 

  63. Brodman, B.W., Radell, J.: X-ray powder diffraction patterns of some—alkanone urea inclusion compounds. Seperation Sci. 2, 139–142 (1967)

    Article  CAS  Google Scholar 

  64. Radell, J., Brodman, B.W.: Urea inclusion compounds of alkenoic acids and alkyl alkenoates. Can. J. Chem. 43, 304–305 (1965)

    Article  CAS  Google Scholar 

  65. Radell, J., Connolly, J.W.: Determination of relative stability of urea complexes from X-ray powder diffraction data. In: Muller, W.M. (ed.) Advances in X-ray analysis, vol. 4, pp. 140–150. Plenum Press, New York (1961)

    Chapter  Google Scholar 

  66. Harris, K.D.M., Jonsen, P.: 2H-NMR investigation of the dynamic behaviour of n-hexadecane in its urea inclusion compound. Chem. Phy. Lett. 154, 593–598 (1989)

    Article  CAS  Google Scholar 

  67. Harris, K.D.M.: Solid state NMR. Nucl. Mag. Reson. 22, 230–260 (1993)

    CAS  Google Scholar 

  68. Ru-Sheng, Z., Ri-Fang, Y., Liu-Hong, Y., He, L.: Spectroscopic data derived structure of lafutidine. Acta Metall. Sin. 23(3), 313–319 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Akums Drugs and Pharmaceuticals Ltd, New Delhi, India, for providing gift sample of Lafutidine. Thanks are due to SAIF, Panjab University, Chandigarh, India for providing XRD and NMR facilities. Thanks are also due to JCDM College of Pharmacy, Sirsa, India for allowing them to conduct DSC studies. Thanks are due to Indian Agricultural Research Institute, Pusa, New Delhi, India for providing facilities to conduct XRD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhall, M., Madan, A.K. Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea. J Incl Phenom Macrocycl Chem 82, 335–350 (2015). https://doi.org/10.1007/s10847-015-0493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0493-z

Keywords

Navigation