Skip to main content
Log in

Calixarenes and related macrocycles as gene delivery vehicles

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The success of gene therapy depends largely on the development of new efficient gene delivery vehicles. The emerging class of molecules for this application is macrocycles that feature persistent shape, thus ensuring higher level of supramolecular organization of the DNA complexes. The review focuses on recently developed calixarenes and close analogues as gene delivery vectors, their chemistry, ability to compact nucleic acids, transfection ability in vitro and cytotoxicity. Their fixed conformation with the possibility of multiple functional groups at the upper and lower rims allows preparation of cone-shaped macromolecules capable of programmed hierarchical assembly in the presence of DNA. It is shown that specially designed calixarenes, particularly those having amphiphilic structure with clustered DNA binding units, can form small virus-sized DNA nanoparticles with well-defined architecture, high transfection efficiency and low toxicity. The field is still largely underexplored so that there is a lot of room for further improvement of the molecular design of calixarenes. Moreover, their evaluation in vivo on animals will be an important step towards their validation for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mintzer, M.A., Simanek, E.E.: Nonviral vectors for gene delivery. Chem. Rev. 109, 259 (2009)

    Article  CAS  Google Scholar 

  2. Ginn, S.L., Alexander, I.E., Edelstein, M.L., Abedi, M.R., Wixon, J.: Gene therapy clinical trials worldwide to 2012—an update. J. Gene Med. 15, 65–77 (2013)

    Article  CAS  Google Scholar 

  3. Dominska, M., Dykxhoorn, D.M.: Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123, 1183–1189 (2010)

    Article  CAS  Google Scholar 

  4. Nishikawa, M., Huang, L.: Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther. 12, 861–870 (2001)

    Article  CAS  Google Scholar 

  5. Whitehead, K.A., Langer, R., Anderson, D.G.: Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009)

    Article  CAS  Google Scholar 

  6. Thomas, C.E., Ehrhardt, A., Kay, M.A.: Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003)

    Article  CAS  Google Scholar 

  7. Wasungu, L., Hoekstra, D.: Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release 116, 255 (2006)

    Article  CAS  Google Scholar 

  8. Martin, B., Sainlos, M., Aissaoui, A., Oudrhiri, N., Hauchecorne, M., Vigneron, J.P., Lehn, J.M., Lehn, P.: The design of cationic lipids for gene delivery. Curr. Pharm. Des. 11, 375–394 (2005)

    Article  CAS  Google Scholar 

  9. Hirko, A., Tang, F., Hughes, J.A.: Cationic lipid vectors for plasmid DNA delivery. Curr. Med. Chem. 10, 1185 (2003)

    Article  CAS  Google Scholar 

  10. De Smedt, S.C., Demeester, J., Hennink, W.E.: Cationic polymer based gene delivery systems. Pharm. Res. 17, 113–126 (2000)

    Article  Google Scholar 

  11. Mao, S., Sun, W., Kissel, T.: Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62, 12–27 (2010)

    Article  CAS  Google Scholar 

  12. Pack, D.W., Hoffman, A.S., Pun, S., Stayton, P.S.: Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593 (2005)

    Article  CAS  Google Scholar 

  13. Safinya, C.R.: Structures of lipid–DNA complexes: supramolecular assembly and gene delivery. Curr. Opin. Struct. Biol. 11, 440 (2001)

    Article  CAS  Google Scholar 

  14. Koltover, I., Salditt, T., Radler, J.O., Safinya, C.R.: An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998)

    Article  CAS  Google Scholar 

  15. Wightman, L., Kircheis, R., Rössler, V., Garotta, S., Ruzicka, R., Kursa, M., Wagner, E.: Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001)

    Article  CAS  Google Scholar 

  16. Goula, D., Remy, J.S., Erbacher, P., Wasowicz, M., Levi, G., Abdallah, B., Demeneix, B.A.: Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5, 712–717 (1998)

    Article  CAS  Google Scholar 

  17. Lavigne, M.D., Górecki, D.C.: Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin. Emerg. Drugs 11, 541–557 (2006)

    Article  CAS  Google Scholar 

  18. Mastrobattista, E., van der Aa, M.A.E.M., Hennink, W.E., Crommelin, D.J.A.: Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 5, 115–121 (2006)

    Article  Google Scholar 

  19. Kogure, K., Akita, H., Yamada, Y., Harashima, H.: Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 60, 559–571 (2008)

    Article  CAS  Google Scholar 

  20. Kostarelos, K., Miller, A.D.: Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem. Soc. Rev. 34, 970–994 (2005)

    Article  CAS  Google Scholar 

  21. Ghosh, P.S., Kim, C.K., Han, G., Forbes, N.S., Rotello, V.M.: Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2, 2213–2218 (2008)

    Article  CAS  Google Scholar 

  22. Green, J.J., Zhou, B.Y., Mitalipova, M.M., Beard, C., Langer, R., Jaenisch, R., Anderson, D.G.: Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett. 8, 3126–3130 (2008)

    Article  CAS  Google Scholar 

  23. Elemans, J.A.A.W., Rowan, A.E., Nolte, R.J.M.: Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003)

    Article  CAS  Google Scholar 

  24. Klymchenko, A.S., Furukawa, S., Müllen, K., Van Der Auweraer, M., De Feyter, S.: Supramolecular hydrophobic–hydrophilic nanopatterns at electrified interfaces. Nano Lett. 7, 791–795 (2007)

    Article  CAS  Google Scholar 

  25. Guillot-Nieckowski, M., Eisler, S., Diederich, F.: Dendritic vectors for gene transfection. N. J. Chem. 31, 1111–1127 (2007)

    Article  CAS  Google Scholar 

  26. Lee, C.C., MacKay, J.A., Fréchet, J.M.J., Szoka, F.C.: Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005)

    Article  CAS  Google Scholar 

  27. Reddy Panyala, N., Peña-Méndez, E.M., Havel, J.: Gold and nano-gold in medicine: overview, toxicology and perspectives. J. Appl. Biomed. 7, 75–91 (2009)

    Google Scholar 

  28. Liu, J., Stace-Naughton, A., Brinker, C.J.: Silica nanoparticle supported lipid bilayers for gene delivery. Chem. Commun. 34, 5100–5102 (2009)

    Article  Google Scholar 

  29. Dong, L., Xu, H., Liu, Y.B., Lu, B., Xu, D.M., Li, B.H., Gao, J., Wu, M., Yao, S.D., Zhao, J., Guo, Y.J.: M-PEIs nanogels: potential nonviral vector for systemic plasmid delivery to tumor cells. Cancer Gene Ther. 16, 561–566 (2009)

    Article  CAS  Google Scholar 

  30. Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)

    Article  CAS  Google Scholar 

  31. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.P., Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)

    Article  CAS  Google Scholar 

  32. Gao, L., Nie, L., Wang, T., Qin, Y., Guo, Z., Yang, D., Yan, X.: Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 7, 239–242 (2006)

    Article  CAS  Google Scholar 

  33. Tran, P.A., Zhang, L., Webster, T.J.: Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 61, 1097–1114 (2009)

    Article  CAS  Google Scholar 

  34. Ortiz Mellet, C., Benito, J.M., Garcia Fernandez, J.M.: Preorganized, macromolecular, gene-delivery systems. Chem. Eur. J. 16, 6728–6742 (2010)

    Article  CAS  Google Scholar 

  35. Aoyama, Y.: Macrocyclic glycoclusters: from amphiphiles through nanoparticles to glycoviruses. Chem. Eur. J. 10, 588–593 (2004)

    Article  CAS  Google Scholar 

  36. Aoyama, Y., Kanamori, T., Nakai, T., Sasaki, T., Horiuchi, S., Sando, S., Niidome, T.: Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. 125, 3455–3457 (2003)

    Article  CAS  Google Scholar 

  37. Hayashida, O., Mizuki, K., Akagi, K., Matsuo, A., Kanamori, T., Nakai, T., Sando, S., Aoyama, Y.: Macrocyclic glycoclusters. Self-aggregation and phosphate-induced agglutination behaviors of calix[4]resorcarene-based quadruple-chain amphiphiles with a huge oligosaccharide pool. J. Am. Chem. Soc. 125, 594–601 (2003)

    Article  CAS  Google Scholar 

  38. Nakai, T., Kanamori, T., Sando, S., Aoyama, Y.: Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J. Am. Chem. Soc. 125, 8465–8475 (2003)

    Article  CAS  Google Scholar 

  39. Sansone, F., Dudič, M., Donofrio, G., Rivetti, C., Baldini, L., Casnati, A., Cellai, S., Ungaro, R.: DNA condensation and cell transfection properties of guanidinium calixarenes: dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc. 128, 14528–14536 (2006)

    Article  CAS  Google Scholar 

  40. Dudic, M., Colombo, A., Sansone, F., Casnati, A., Donofrio, G., Ungaro, R.: A general synthesis of water soluble upper rim calix[n]arene guanidinium derivatives which bind to plasmid DNA. Tetrahedron 60, 11613–11618 (2004)

    Article  CAS  Google Scholar 

  41. Isobe, H., Nakanishi, W., Tomita, N., Jinno, S., Okayama, H., Nakamura, E.: Gene delivery by aminofullerenes: structural requirements for efficient transfection. Chem. Asian J. 1, 167–175 (2006)

    Article  CAS  Google Scholar 

  42. Klumpp, C., Lacerda, L., Chaloin, O., Ros, T.D., Kostarelos, K., Prato, M., Bianco, A.: Multifunctionalised cationic fullerene adducts for gene transfer: design, synthesis and DNA complexation. Chem. Commun. 3762–3764 (2007)

    Article  Google Scholar 

  43. Sigwalt, D., Holler, M., Iehl, J., Nierengarten, J.F., Nothisen, M., Morin, E., Remy, J.S.: Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun. 47, 4640–4642 (2011)

    Article  CAS  Google Scholar 

  44. Sitharaman, B., Zakharian, T.Y., Saraf, A., Ashcroft, P.M.J., Pan, S., Pham, Q.P., Mikos, A.G., Wilson, L.J., Engler, D.A.: Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol. Pharm. 5, 567–578 (2008)

    Article  CAS  Google Scholar 

  45. Srinivasachari, S., Fichter, K.M., Reineke, T.M.: Polycationic β-cyclodextrin “click clusters”: monodisperse and versatile scaffolds for nucleic acid delivery. J. Am. Chem. Soc. 130, 4618–4627 (2008)

    Article  CAS  Google Scholar 

  46. Ortega-Caballero, F., Mellet, C.O., Le Gourriérec, L., Guilloteau, N., Di Giorgio, C., Vierling, P., Defaye, J., García Fernéndez, J.M.: Tailoring β-cyclodextrin for DNA complexation and delivery by homogeneous functionalization at the secondary face. Org. Lett. 10, 5143–5146 (2008)

    Article  CAS  Google Scholar 

  47. Yang, C., Li, H., Goh, S.H., Li, J.: Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28, 3245–3254 (2007)

    Article  CAS  Google Scholar 

  48. Díaz-Moscoso, A., Gourriérec, L.L., Gómez-García, M., Benito, J.M., Balbuena, P., Ortega-Caballero, F., Guilloteau, N., Giorgio, C.D., Vierling, P., Defaye, J., Mellet, C.O., Fernández, J.M.G.: Polycationic amphiphilic cyclodextrins for gene delivery: synthesis and effect of structural modifications on plasmid DNA complex stability, cytotoxicity, and gene expression. Chem. Eur. J. 15, 12871–12888 (2009)

    Article  Google Scholar 

  49. Nierengarten, I., Nothisen, M., Sigwalt, D., Biellmann, T., Holler, M., Remy, J.S., Nierengarten, J.F.: Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications. Chem. Eur. J. 19, 17552–17558 (2013)

    Article  CAS  Google Scholar 

  50. Asfari, Z., Boehmer, V., Harowfield, J., Vicens, J. (eds.): Calixarenes. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  51. Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)

    Article  CAS  Google Scholar 

  52. Metivier, R., Leray, I., Valeur, B.: Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. Chem. Eur. J. 10, 4480–4490 (2004)

    Article  CAS  Google Scholar 

  53. Yakovenko, A.V., Boyko, V.I., Kalchenko, V.I., Baldini, L., Casnati, A., Sansone, F., Ungaro, R.: N-linked peptidocalix[4]arene bisureas as enantioselective receptors for amino acid derivatives. J. Org. Chem. 72, 3223 (2007)

    Article  CAS  Google Scholar 

  54. Brody, M.S., Schalley, C.A., Rudkevich, D.M., Rebek Jr., J.: Synthesis and characterization of a unimolecular capsule. Angew. Chem. Int. Ed. 38, 1640–1644 (1999)

    Article  CAS  Google Scholar 

  55. Becherer, M.S., Schade, B., Bottcher, C., Hirsch, A.: Supramolecular assembly of self-labeled amphicalixarenes. Chem. Eur. J. 15, 1637–1648 (2009)

    Article  CAS  Google Scholar 

  56. Arimori, S., Nagasaki, T., Shinkai, S.: Self-assembly of tetracationic amphiphiles bearing a calix[4]arene core. Correlation between the core structure and the aggregation properties. J. Chem. Soc. Perkin Trans. 2, 679–683 (1995)

    Article  Google Scholar 

  57. Houmadi, S., Coquiere, D., Legrand, L., Faute, M.C., Goldmam, M., Reinaud, O., Remita, S.: Architecture-controlled “SMART” calix[6]arene self-assemblies in aqueous solution. Langmuir 23, 4849–4855 (2007)

    Article  CAS  Google Scholar 

  58. Tanaka, Y., Miyachi, M., Kobuke, Y.: Selective vesicle formation from calixarenes by self-assembly. Angew. Chem. Int. Ed. 38, 504–506 (1999)

    Article  CAS  Google Scholar 

  59. Coleman, A.W., Perret, F., Moussa, A., Dupin, M., Guo, Y., Perron, H.: Calix[n]arenes as protein sensors. Top. Curr. Chem. 277, 31 (2007)

    Article  CAS  Google Scholar 

  60. De Fatima, A., Fernandes, S.A., Sabino, A.A.: Calixarenes as new platforms for drug design. Curr. Drug Disc. Tech. 6, 151 (2009)

    Article  Google Scholar 

  61. Rodik, R.V., Boyko, V.I., Kalchenko, V.I.: Calixarenes in bio-medical researches. Curr. Med. Chem. 16, 1630 (2009)

    Article  CAS  Google Scholar 

  62. Vovk, A.I., Kalchenko, V.I., Cherenok, S.A., Kukhar, V.P., Muzychka, O.V., Lozynsky, M.O.: Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Org. Biomol. Chem. 2, 3162 (2004)

    Article  CAS  Google Scholar 

  63. Aoyama, Y.: Glycovirus. Trends Glycosci. Glycotechnol. 17, 39–47 (2005)

    Article  CAS  Google Scholar 

  64. Fujimoto, T., Shimizu, C., Hayashida, O., Aoyama, Y.: Solution-to-surface molecular-delivery system using a macrocyclic sugar cluster. Sugar-directed adsorption of guests in water on polar solid surfaces. J. Am. Chem. Soc. 119, 6676–6677 (1997)

    Article  CAS  Google Scholar 

  65. Nault, L., Cumbo, A., Pretôt, R.F., Sciotti, M.A., Shahgaldian, P.: Cell transfection using layer-by-layer (LbL) coated calixarene-based solid lipid nanoparticles (SLNs). Chem. Commun. 46, 5581–5583 (2010)

    Article  CAS  Google Scholar 

  66. Shahgaldian, P., Sciotti, M.A., Pieles, U.: Amino-substituted amphiphilic calixarenes: self-assembly and interactions with DNA. Langmuir 24, 8522–8526 (2008)

    Article  CAS  Google Scholar 

  67. Lalor, R., DiGesso, J.L., Mueller, A., Matthews, S.E.: Efficient gene transfection with functionalised multicalixarenes. Chem. Commun. 2007(46), 4907–4909 (2007)

    Article  Google Scholar 

  68. Hu, W., Blecking, C., Kralj, M., Šuman, L., Piantanida, I., Schrader, T.: Dimeric calixarenes: a new family of major-groove binders. Chem. Eur. J. 18, 3589–3597 (2012)

    Article  CAS  Google Scholar 

  69. Bagnacani, V., Sansone, F., Donofrio, G., Baldini, L., Casnati, A., Ungaro, R.: Macrocyclic nonviral vectors: high cell transfection efficiency and low toxicity in a lower rim guanidinium calix[4]arene. Org. Lett. 10, 3953–3956 (2008)

    Article  CAS  Google Scholar 

  70. Felgner, J.H., Kumar, R., Sridhar, C.N., Wheeler, C.J., Tsai, Y.J., Border, R., Ramsey, P., Martin, M., Felgner, P.L.: Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550 (1994)

    CAS  Google Scholar 

  71. Farhood, H., Serbina, N., Huang, L.: The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235, 289 (1995)

    Article  Google Scholar 

  72. Bagnacani, V., Franceschi, V., Fantuzzi, L., Casnati, A., Donofrio, G., Sansone, F., Ungaro, R.: Lower rim guanidinocalix[4]arenes: macrocyclic nonviral vectors for cell transfection. Bioconjug. Chem. 23, 993–1002 (2012)

    Article  CAS  Google Scholar 

  73. Bagnacani, V., Franceschi, V., Bassi, M., Lomazzi, M., Donofrio, G., Sansone, F., Casnati, A., Ungaro, R.: Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nat. Commun. 4, 1721 (2013)

    Article  Google Scholar 

  74. Shi, Y., Schneider, H.J.: Interactions between aminocalixarenes and nucleotides or nucleic acids. J. Chem. Soc. Perkin Trans. 2, 1797–1803 (1999)

    Article  Google Scholar 

  75. Mchedlov-Petrossyan, N.O., Vilkova, L.N., Vodolazkaya, N.A., Yakubovskaya, A.G., Rodik, R.V., Boyko, V.I., Kalchenko, V.I.: The nature of aqueous solutions of a cationic calix[4]arene: a comparative study of dye-calixarene and dye-surfactant interactions. Sensors 6, 962–977 (2006)

    Article  CAS  Google Scholar 

  76. Rodik, R.V., Klymchenko, A.S., Jain, N., Miroshnichenko, S.I., Richert, L., Kalchenko, V.I., Mély, Y.: Virus-sized DNA nanoparticles for gene delivery based on micelles of cationic calixarenes. Chem. Eur. J. 17, 5526–5538 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey S. Klymchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodik, R.V., Klymchenko, A.S., Mely, Y. et al. Calixarenes and related macrocycles as gene delivery vehicles. J Incl Phenom Macrocycl Chem 80, 189–200 (2014). https://doi.org/10.1007/s10847-014-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0412-8

Keywords

Navigation