Skip to main content
Log in

Inclusion complexes of dihydroartemisinin with cyclodextrin and its derivatives: characterization, solubilization and inclusion mode

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The characterization, inclusion complexation behavior and binding ability of the inclusion complexes of dihydroartemisinin with β-cyclodextrin and its derivatives, sulfobutyl ether β-cyclodextrin (SBE-β-CD), mono[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextrin (en-β-CD) and mono{6-[2-(2-aminoethylamino)ethylamino]-6-deoxy}-β-cyclodextrin (dien-β-CD), were studied using phenolphthalein as a spectral probe. Spectral titration was performed in aqueous buffer solution (pH ca. 10.5) at 25 °C to determine the binding constants. The inclusion complexation behaviors were investigated in both solution and solid state by means of NMR, TG, XRD. The results showed that the water solubility and thermal stability of dihydroartemisinin were significantly increased in the inclusion complex with cyclodextrins (CDs). According to 1H NMR and 2D NMR spectroscopy (ROESY), the A, B rings of dihydroartemisinin can be included into the cavity of CDs. The enhanced binding ability of CDs towards dihydroartemisinin was discussed from the viewpoint of the size/shape-fit concept and multiple recognition mechanism between host and guest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balter, M., Marshall, E., Vogel, G., Taubes, G., Pennisi, E., Enserink, M.: Special focus of articles on malaria. Science 290, 428–441 (2000)

    Article  Google Scholar 

  2. Klayman, D.: An antimalarial drug from China. Science 228, 1049–1055 (1989)

    Article  Google Scholar 

  3. Luo, X.D., Shen, C.C.: The chemistry, pharmacology, and clinical applications of Qinghaosu (artemisinin) and its derivatives. Med. Res. Rev. 7, 29–52 (1987)

    Article  CAS  Google Scholar 

  4. O’Neill, P.M.: A worthy adversary for malaria. Nature 430, 838–839 (2004)

    Article  Google Scholar 

  5. Dhingra, V., Vishweshwar, R.K., Lakshmi, N.M.: Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci. 66, 279–300 (2000)

    Article  CAS  Google Scholar 

  6. O’Neill, P.M., Posner, G.H.: A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem. 47, 2945–2964 (2004)

    Article  Google Scholar 

  7. Wiesner, J., Ortmann, R., Jomaa, H., Schlitzer, M.: New antimalarial drugs. Angew. Chem. Int. Ed. Engl. 42, 5274–5293 (2003)

    Article  CAS  Google Scholar 

  8. Meshnick, S.R.: Mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32, 1655–1660 (2002)

    Article  CAS  Google Scholar 

  9. Lai, H., Singh, N.P.: Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 91, 41–46 (1995)

    Article  CAS  Google Scholar 

  10. Efferth, T., Dunstan, H., Sauerbrey, A., Miyachi, H., Chitambar, C.R.: The anti-malarial artesunate is also active against cancer. Int. J. Oncol. 18, 767–773 (2001)

    CAS  Google Scholar 

  11. Efferth, T., Benakis, A., Romero, M.R., Tomicic, M., Rauh, R., Steinbach, D., Stamminger, T.: Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic. Biol. Med. 37, 998–1009 (2004)

    Article  CAS  Google Scholar 

  12. Gabriëls, M.J., Plaizier, V.: Design of a dissolution system for the evaluation of the release rate characteristics of artemether and dihydroartemisinin form tablets. Int. J. Pharm. 274, 245–260 (2004)

    Article  Google Scholar 

  13. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  14. Loftsson, T., Järvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36, 59–79 (1999)

    Article  Google Scholar 

  15. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  16. Khan, A.R., Forgo, P., Stine, K.J.: Methods for selective modification of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)

    Article  CAS  Google Scholar 

  17. Liu, Y., Chen, G.-S., Li, L., Zhang, H.-Y., Cao, D.-X., Yuan, Y.-J.: Inclusion complexation and solubilization of paclitaxel by bridged bis (β-cyclodextrin)s containing a tetraethylenepentamine spacer. J. Med. Chem. 46, 4634–4637 (2003)

    Article  CAS  Google Scholar 

  18. Yang, B., Yang, L.-J., Lin, J., Chen, Y., Liu, Y.: Binding behaviors of scutellarin with α-, β-, γ-cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 64, 149–155 (2009)

    Article  CAS  Google Scholar 

  19. Sommerdijk, N.A.J.M., Visser, A.J.W.G., van Hoek, A., Nolte, R.J.M., Engbersen, J.F.J., Reinhoudt, D.N.: Interconnective host-guest complexation of β-cyclodextrin-calix[4]arene couples. J. Am. Chem. Soc. 121, 28–33 (1999)

    Article  Google Scholar 

  20. Muhammad, T.A., Vivian, B.S.: Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch. Pharm. Res. 32, 155–165 (2009)

    Article  Google Scholar 

  21. Zhang, X.Y.: Increased stability and solubility of dihydroartemisinin in aqueous solution through the formation of complexes with 2-hydroxypropyl-β-cyclodextrin. J. Chin. Pharm. Sci. 18, 170–176 (2009)

    Google Scholar 

  22. Hitendra, S., SaurabhShah, K., Sanjay, J.: Nasal in situ gel containing hydroxypropyl β-cyclodextrin inclusion complex of artemether: development and in vitro evaluation. J. Incl. Phenom. Macrocycl. Chem. 70, 49–58 (2011)

    Article  Google Scholar 

  23. Wong, J.W., Yuen, K.H.: Improved oral bioavailability of artemisinin through inclusion complexation with β- and γ-cyclodextrins. Int. J. Pharm. 227, 177–185 (2001)

    Article  CAS  Google Scholar 

  24. Hermine, Z.-D., Dive, G., Moudachirou, M., Michel, F., Evrard, B.: Understanding the interactions between artemisinin and cyclodextrins: spectroscopic studies and molecular modeling. J. Incl. Phenom. Macrocycl. Chem. 74, 305–315 (2012)

    Article  Google Scholar 

  25. Yang, B., Lin, J., Chen, Y., Liu, Y.: Artemether/hydroxypropyl-β-cyclodextrin host–guest system: characterization, phase-solubility and inclusion mode. Bioorg. Med. Chem. 17, 6311–6317 (2009)

    Article  CAS  Google Scholar 

  26. Yang, B., Wang, J., Huang, R., Zhao, Y.-L., Yang, J.: Binding behavior of artemether/sulfobutyl ether β-cyclodextrin in solution and the solid state. Monatsh. Chem. 143, 235–241 (2012)

    Article  CAS  Google Scholar 

  27. Shen, B.-J., Tong, L.-H., Jin, D.-S.: Synthesis and characterization of novel multi-functional host compounds, 3. β-cyclodextrin derivatives bearing schiff base moiety. Synth. Commun. 21, 635–641 (1991)

    Article  CAS  Google Scholar 

  28. Liu, Y., Han, B.H., Zhang, Y.M., Chen, R.: Molecular recognition study on supramolecular system (VII). Chin. Sci. Bull. 42, 1189–1192 (1997)

    Article  CAS  Google Scholar 

  29. You, C.-C., Zhao, Y.-L., Liu, Y.: Molecular recognition study of β-cyclodextrin and its two derivatives with some aliphatic guests by competitive inclusion method. Chem. J. Chin. Univ. 22, 218–222 (2001)

    CAS  Google Scholar 

  30. Inoue, Y., Yamamoto, K., Wada, T., Everitt, S., Gao, X.-M.: Inclusion complexation of (cyclo)alkanes and (cyclo)alkanols with 6-O-modified cyclodextrins. J. Chem. Soc. Perkin Trans. 2, 1807–1816 (1998)

    Article  Google Scholar 

  31. Ayala-Zavala, J.F., Del-Toro-Sánchez, L., Alvarez-Parrilla, E., González-Aguilar, G.A.: High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems. J. Food Sci. 73, 41–47 (2008)

    Article  Google Scholar 

  32. Liu, Y., Chen, G.-S., Chen, Y., Lin, J.: Inclusion complexes of azadirachtin with native and methylated cyclodextrins: solubilization and binding ability. Bioorg. Med. Chem. 13, 4037–4042 (2005)

    Article  CAS  Google Scholar 

  33. Schneider, H.J., Hacket, F.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  34. Vieira, E.K.B., Lázaro, G.S., Conegero, L.S., Almeida, L.E., Barreto, L.S., da Costa, N.B., Gimeneza, I.F.: Sulfadiazine/hydroxypropyl-β-cyclodextrin host–guest system: characterization, phase-solubility and molecular modeling. Bioorg. Med. Chem. 16, 5788–5794 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NNSFC) (No. 21062009), and the Natural Science Foundation of Yunnan Province (No. 2011FZ059), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, D., Yang, B., Zhao, YL. et al. Inclusion complexes of dihydroartemisinin with cyclodextrin and its derivatives: characterization, solubilization and inclusion mode. J Incl Phenom Macrocycl Chem 79, 349–356 (2014). https://doi.org/10.1007/s10847-013-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0358-2

Keywords

Navigation