Skip to main content
Log in

Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Safety in the operations of UAVs (Unmanned Aerial Vehicles) depends on the current and future reduction of technical barriers and on the improvements related to their autonomous capabilities. Since the early stages, aviation has been based on pilots and Air Traffic Controllers that take decisions to make aircraft follow their routes while avoiding collisions. RPA (Remotely Piloted Aircraft) can still involve pilots as they are UAVs controlled from ground, but need the definition of common rules, of a dedicated Traffic Controller and exit strategies in the case of lack of communication between the Ground Control Station and the aircraft. On the other hand, completely autonomous aircraft are currently banned from civil airspace, but researchers and engineers are spending great effort in developing methodologies and technologies to increase the reliability of fully autonomous flight in view of a safe and efficient integration of UAVs in the civil airspace. This paper deals with the design of a collision avoidance system based on a Distributed Model Predictive Controller (DMPC) for trajectory tracking, where anticollision constraints are defined in accordance with the Right of Way rules, as prescribed by the International Civil Aviation Organization (ICAO) for human piloted flights. To reduce the computational burden, the DMPC is formulated as a Mixed Integer Quadratic Programming optimization problem. Simulation results are shown to prove the effectiveness of the approach, also in the presence of a densely populated airspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DeGarmo, M., Nelson, G.M.: Prospective unmanned aerial vehicle operations in the future national airspace system. In: AIAA 4th Aviation Technology Integration and Operations (ATIO) Forum, pp 20–23 (2004)

  2. Pellebergs, J., Aeronautics, S.: The midcas project. Saab Aeronautics (2012)

  3. Strohmeier, M., Schafer, M., Lenders, V., Martinovic, I.: Realities and challenges of nextgen air traffic management: the case of ads-b. IEEE Commun. Mag. 52(5), 111–118 (2014)

    Article  Google Scholar 

  4. Sesar joint undertaking. Concepts of operations for european utm systems (corus). [Online]. Available: https://www.sesarju.eu/projects/corus

  5. Bilimoria, K., Sridhar, B., Chatterji, G.: Effects of conflict detection methods for air traffic management. In: AIAA Guidance, Navigation, and Control Conference (1996)

  6. Hwang, I., Kim, J., Tomlin, C., McNally, D., Gong, C., Rantanen, E., Naseri, A., Neogi, N.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)

    Article  Google Scholar 

  7. Pallottino, L., Scordio, V.G., Bicchi, A., Frazzoli, E.: Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Trans. Robot. 23(6), 1170–1183 (2007)

    Article  Google Scholar 

  8. Andrews, J.: A relative motion analysis of horizontal collision avoidance. In: SAFE Association, Annual Symposium, 15 th, Las Vegas, Nev, pp 58–61 (1977)

  9. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MathSciNet  Google Scholar 

  10. Frazzoli, E., Mao, Z.-H., Oh, J.-H., Feron, E.: Resolution of conflicts involving many aircraft via semidefinite programming. J. Guid. Control. Dyn. 24(1), 79–86 (2001)

    Article  Google Scholar 

  11. Hill, J., Archibald, J., Stirling, W., Frost, R.: A multi-agent system architecture for distributed air traffic control. In: Proc. AIAA Guidance, Navigation and Control Conference (2005)

  12. Ramasamy, S., Sabatini, R., Gardi, A.: A unified approach to separation assurance and collision avoidance for uas operations and traffic management. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 920–928 (2017)

  13. D’Amato, E., Mattei, M., Notaro, I.: Bi-level flight path planning of uav formations with collision avoidance. J. Intell. Robot. Syst., pp. 1–19 (2018)

  14. Eby, M.S., Kelly, W.E.: Free flight separation assurance using distributed algorithms. In: Aerospace Conference, 1999. Proceedings. 1999 IEEE, vol. 2, pp 429–441. IEEE (1999)

  15. Lalish, E., Morgansen, K.A., Tsukamaki, T.: Formation tracking control using virtual structures and deconfliction. In: 2006 45th IEEE Conference on Decision and Control, pp 5699?-5705. IEEE (2006)

  16. Mastellone, S., Stipanović, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  17. Roussos, G.P., Dimarogonas, D.V., Kyriakopoulos, K.J.: 3d navigation and collision avoidance for a non-holonomic vehicle. In: American Control Conference, 2008, pp 3512–3517. IEEE (2008)

  18. Tony, L.A., Ghose, D., Chakravarthy, A.: Avoidance maps: a new concept in uav collision avoidance. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1483–1492 (2017)

  19. Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(5), 562–574 (1998)

    Article  Google Scholar 

  20. Shiller, Z., Large, F., Sekhavat, S.: Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 3716–3721. IEEE (2001)

  21. Carbone, C., Ciniglio, U., Corraro, F., Luongo, S.: A novel 3d geometric algorithm for aircraft autonomous collision avoidance. In: 2006 45th IEEE Conference on Decision and Control, pp 1580–1585. IEEE (2006)

  22. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robot. 32(3), 207–226 (2012)

    Article  Google Scholar 

  23. Leonard, J., Savvaris, A., Tsourdos, A.: Distributed reactive collision avoidance for a swarm of quadrotors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231(6), 1035–1055 (2017)

    Article  Google Scholar 

  24. ICAO: Annex 2 to the convention on international civil aviation: Aerodromes. In: Rules of the Air ICAO

  25. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  26. Maciejowski, J.M.: Predictive Control: with Constraints. Pearson Education, London (2002)

    MATH  Google Scholar 

  27. Scokaert, P.O., Mayne, D.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43(8), 1136–1142 (1998)

    Article  MathSciNet  Google Scholar 

  28. Richards, A., How, J.P.: Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility. In: Proceedings of the 2003 American Control Conference, 2003, vol. 5, pp 4034–4040 (2003)

  29. Wang, C., Song, B., Huang, P., Tang, C.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J. Intell. Robot. Syst. 83(2), 315–333 (2016)

    Article  Google Scholar 

  30. Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. J. Intell. Robot. Syst. 81(3-4), 443–469 (2016)

    Article  Google Scholar 

  31. Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple uavs. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p 4588 (2002)

  32. Bellingham, J., Richards, A., How, J.P: Receding horizon control of autonomous aerial vehicles. In: Proceedings of the 2002 American Control Conference, 2002, vol. 5, pp 3741–3746. IEEE (2002)

  33. Richards, A., How, J.: Decentralized model predictive control of cooperating uavs. In: 43rd IEEE Conference on Decision and Control, vol. 4, pp 4286–4291. Citeseer (2004)

  34. Grancharova, A., Grøtli, E.I., Ho, D.-T., Johansen, T.A.: Uavs trajectory planning by distributed mpc under radio communication path loss constraints. J. Intell. Robot. Syst. 79(1), 115–134 (2015)

    Article  Google Scholar 

  35. Chen, Y., Yu, J., Su, X., Luo, G.: Path planning for multi-uav formation. J. Intell. Robot. Syst. 77 (1), 229–246 (2015)

    Article  Google Scholar 

  36. Tartaglione, G., D’Amato, E., Ariola, M., Rossi, P.S., Johansen, T.A.: Model predictive control for a multi-body slung-load system. Robot. Auton. Syst. 92, 1–11 (2017)

    Article  Google Scholar 

  37. Ariola, M., Mattei, M., D’Amato, E., Notaro, I., Tartaglione, G.: Model predictive control for a swarm of fixed wing uavs. In: 30th Congress of the International Council of the Aeronautical Sciences ICAS (2016)

  38. Bemporad, A., Rocchi, C.: Decentralized linear time-varying model predictive control of a formation of unmanned aerial vehicles. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp 7488–7493. IEEE (2011)

  39. Wang, X., Yadav, V., Balakrishnan, S.: Cooperative uav formation flying with obstacle/collision avoidance (2007)

  40. Dentler, J., Rosalie, M., Danoy, G., Bouvry, P., Kannan, S., Olivares-Mendez, M.A., Voos, H.: Collision avoidance effects on the mobility of a uav swarm using chaotic ant colony with model predictive control. J. Intell. Robot. Syst., pp. 1–17 (2018)

  41. Lazimy, R.: Mixed-integer quadratic programming. Math. Program. 22(1), 332–349 (1982)

    Article  MathSciNet  Google Scholar 

  42. Bemporad, A.: Solving mixed-integer quadratic programs via nonnegative least squares. IFAC-PapersOnLine 48(23), 73–79 (2015)

    Article  Google Scholar 

  43. Fukushima, H., Kon, K., Matsuno, F.: Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans. Robot. 29(5), 1308–1317 (2013)

    Article  Google Scholar 

  44. Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the 2002 American Control Conference, 2002, vol. 3, pp 1936–1941. IEEE (2002)

  45. Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, vol. 108. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  46. Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer programming for multi-vehicle path planning. In: 2001 European Control Conference (ECC), pp 2603–2608. IEEE (2001)

  47. Garey, M.R.: Computers and intractability: a guide to the theory of np-completeness, freeman. Fundamental (1997)

  48. Earl, M.G., D’andrea, R.: Iterative milp methods for vehicle-control problems. IEEE Trans. Robot. 21(6), 1158–1167 (2005)

    Article  Google Scholar 

  49. Vitus, M., Pradeep, V., Hoffmann, G., Waslander, S., Tomlin, C.: Tunnel-milp: Path planning with sequential convex polytopes. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p 7132 (2008)

  50. Prodan, I., Stoican, F., Olaru, S., Niculescu, S.-I.: Enhancements on the hyperplanes arrangements in mixed-integer programming techniques. J. Optim. Theory Appl. 154(2), 549–572 (2012)

    Article  MathSciNet  Google Scholar 

  51. Dalamagkidis, K., Valavanis, K.P., Piegl, L.A.: On Integrating Unmanned Aircraft Systems into the National Airspace System: Issues, Challenges, Operational Restrictions, Certification, and Recommendations, vol. 54. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  52. Undertaking, S.J.: European ATM Master Plan Drone roadmap (2018)

  53. D’Amato, E., Notaro, I., Mattei, M.: Distributed collision avoidance for unmanned aerial vehicles integration in the civil airspace. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 94–102. IEEE (2018)

  54. George, J., Ghose, D.: A reactive inverse pn algorithm for collision avoidance among multiple unmanned aerial vehicles. In: American Control Conference, 2009. ACC’09, pp 3890–3895. IEEE (2009)

  55. Takapoui, R., Moehle, N., Boyd, S., Bemporad, A.: A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control., pp. 1–11 (2017)

  56. Archibald, J.K., Hill, J.C., Jepsen, N.A., Stirling, W.C., Frost, R.L.: A satisficing approach to aircraft conflict resolution. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 510–521 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio D’Amato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amato, E., Mattei, M. & Notaro, I. Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace. J Intell Robot Syst 97, 185–203 (2020). https://doi.org/10.1007/s10846-019-01047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01047-5

Keywords

Navigation